Video copy detection using multiple visual cues and MPEG-7 descriptors

We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visual communication and image representation 2010-11, Vol.21 (8), p.838-849
Hauptverfasser: Kuecuektunc, Onur, Bastan, Muhammet, Gueduekbay, Uour, Ulusoy, Oezguer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 8
container_start_page 838
container_title Journal of visual communication and image representation
container_volume 21
creator Kuecuektunc, Onur
Bastan, Muhammet
Gueduekbay, Uour
Ulusoy, Oezguer
description We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies facial frames/shots in a video clip. Matching faces with extended body regions gives the flexibility to discriminate the same person (e.g., an anchor man or a political leader) in different events or scenes. In activity subsequence matching part, a spatio-temporal sequence matching technique is employed to match video clips/segments that are similar in terms of activity. Lastly, the non-facial shots are matched using low-level MPEG-7 descriptors and dynamic-weighted feature similarity calculation. The proposed framework is tested on the query and reference dataset of CBCD task of TRECVID 2008. Our results are compared with the results of top-8 most successful techniques submitted to this task. Promising results are obtained in terms of both effectiveness and efficiency.
doi_str_mv 10.1016/j.jvcir.2010.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831170549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047320310000957</els_id><sourcerecordid>831170549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-492ac3d4df3843ae98f57dc5e107d156f9edb04e0a2a470990ec2e0d2830a6853</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEqXwBCzemBLOsRPHAwOqSkEqggFYLWNfkKs0DnZSqW-PS5mZ7nT6v9Pdl2XXFAoKtL7dFJudcaEoIU1AFAD0JJtRkFUuQdSnh56LnJXAzrOLGDcAwCTjs-zhw1n0xPhhTyyOaEbnezJF13-R7dSNbuiQ7FycdEfMhJHo3pLn1-UqFykfTXDD6EO8zM5a3UW8-qvz7P1h-bZ4zNcvq6fF_To3rIEx57LUhlluW9ZwplE2bSWsqZCCsLSqW4n2EziCLjUXICWgKRFs2TDQdVOxeXZz3DsE_53OGdXWRYNdp3v0U1QNo1RAxWVKsmPSBB9jwFYNwW112CsK6iBNbdSvNHWQpkCoJC1Rd0cK0xM7h0FF47A3aF1IbpT17l_-B7F5dgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831170549</pqid></control><display><type>article</type><title>Video copy detection using multiple visual cues and MPEG-7 descriptors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kuecuektunc, Onur ; Bastan, Muhammet ; Gueduekbay, Uour ; Ulusoy, Oezguer</creator><creatorcontrib>Kuecuektunc, Onur ; Bastan, Muhammet ; Gueduekbay, Uour ; Ulusoy, Oezguer</creatorcontrib><description>We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies facial frames/shots in a video clip. Matching faces with extended body regions gives the flexibility to discriminate the same person (e.g., an anchor man or a political leader) in different events or scenes. In activity subsequence matching part, a spatio-temporal sequence matching technique is employed to match video clips/segments that are similar in terms of activity. Lastly, the non-facial shots are matched using low-level MPEG-7 descriptors and dynamic-weighted feature similarity calculation. The proposed framework is tested on the query and reference dataset of CBCD task of TRECVID 2008. Our results are compared with the results of top-8 most successful techniques submitted to this task. Promising results are obtained in terms of both effectiveness and efficiency.</description><identifier>ISSN: 1047-3203</identifier><identifier>EISSN: 1095-9076</identifier><identifier>DOI: 10.1016/j.jvcir.2010.07.001</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Activity matching ; Clips ; Content-based copy detection ; Face detection ; Facial ; Matching ; MPEG-7 ; Reproduction ; Segments ; Shot ; Subsequence matching ; Tasks ; Time series analysis ; Video copy detection ; Visual ; Visual ques</subject><ispartof>Journal of visual communication and image representation, 2010-11, Vol.21 (8), p.838-849</ispartof><rights>2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-492ac3d4df3843ae98f57dc5e107d156f9edb04e0a2a470990ec2e0d2830a6853</citedby><cites>FETCH-LOGICAL-c380t-492ac3d4df3843ae98f57dc5e107d156f9edb04e0a2a470990ec2e0d2830a6853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jvcir.2010.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Kuecuektunc, Onur</creatorcontrib><creatorcontrib>Bastan, Muhammet</creatorcontrib><creatorcontrib>Gueduekbay, Uour</creatorcontrib><creatorcontrib>Ulusoy, Oezguer</creatorcontrib><title>Video copy detection using multiple visual cues and MPEG-7 descriptors</title><title>Journal of visual communication and image representation</title><description>We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies facial frames/shots in a video clip. Matching faces with extended body regions gives the flexibility to discriminate the same person (e.g., an anchor man or a political leader) in different events or scenes. In activity subsequence matching part, a spatio-temporal sequence matching technique is employed to match video clips/segments that are similar in terms of activity. Lastly, the non-facial shots are matched using low-level MPEG-7 descriptors and dynamic-weighted feature similarity calculation. The proposed framework is tested on the query and reference dataset of CBCD task of TRECVID 2008. Our results are compared with the results of top-8 most successful techniques submitted to this task. Promising results are obtained in terms of both effectiveness and efficiency.</description><subject>Activity matching</subject><subject>Clips</subject><subject>Content-based copy detection</subject><subject>Face detection</subject><subject>Facial</subject><subject>Matching</subject><subject>MPEG-7</subject><subject>Reproduction</subject><subject>Segments</subject><subject>Shot</subject><subject>Subsequence matching</subject><subject>Tasks</subject><subject>Time series analysis</subject><subject>Video copy detection</subject><subject>Visual</subject><subject>Visual ques</subject><issn>1047-3203</issn><issn>1095-9076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEqXwBCzemBLOsRPHAwOqSkEqggFYLWNfkKs0DnZSqW-PS5mZ7nT6v9Pdl2XXFAoKtL7dFJudcaEoIU1AFAD0JJtRkFUuQdSnh56LnJXAzrOLGDcAwCTjs-zhw1n0xPhhTyyOaEbnezJF13-R7dSNbuiQ7FycdEfMhJHo3pLn1-UqFykfTXDD6EO8zM5a3UW8-qvz7P1h-bZ4zNcvq6fF_To3rIEx57LUhlluW9ZwplE2bSWsqZCCsLSqW4n2EziCLjUXICWgKRFs2TDQdVOxeXZz3DsE_53OGdXWRYNdp3v0U1QNo1RAxWVKsmPSBB9jwFYNwW112CsK6iBNbdSvNHWQpkCoJC1Rd0cK0xM7h0FF47A3aF1IbpT17l_-B7F5dgY</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Kuecuektunc, Onur</creator><creator>Bastan, Muhammet</creator><creator>Gueduekbay, Uour</creator><creator>Ulusoy, Oezguer</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Video copy detection using multiple visual cues and MPEG-7 descriptors</title><author>Kuecuektunc, Onur ; Bastan, Muhammet ; Gueduekbay, Uour ; Ulusoy, Oezguer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-492ac3d4df3843ae98f57dc5e107d156f9edb04e0a2a470990ec2e0d2830a6853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activity matching</topic><topic>Clips</topic><topic>Content-based copy detection</topic><topic>Face detection</topic><topic>Facial</topic><topic>Matching</topic><topic>MPEG-7</topic><topic>Reproduction</topic><topic>Segments</topic><topic>Shot</topic><topic>Subsequence matching</topic><topic>Tasks</topic><topic>Time series analysis</topic><topic>Video copy detection</topic><topic>Visual</topic><topic>Visual ques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuecuektunc, Onur</creatorcontrib><creatorcontrib>Bastan, Muhammet</creatorcontrib><creatorcontrib>Gueduekbay, Uour</creatorcontrib><creatorcontrib>Ulusoy, Oezguer</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of visual communication and image representation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuecuektunc, Onur</au><au>Bastan, Muhammet</au><au>Gueduekbay, Uour</au><au>Ulusoy, Oezguer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video copy detection using multiple visual cues and MPEG-7 descriptors</atitle><jtitle>Journal of visual communication and image representation</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>21</volume><issue>8</issue><spage>838</spage><epage>849</epage><pages>838-849</pages><issn>1047-3203</issn><eissn>1095-9076</eissn><abstract>We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies facial frames/shots in a video clip. Matching faces with extended body regions gives the flexibility to discriminate the same person (e.g., an anchor man or a political leader) in different events or scenes. In activity subsequence matching part, a spatio-temporal sequence matching technique is employed to match video clips/segments that are similar in terms of activity. Lastly, the non-facial shots are matched using low-level MPEG-7 descriptors and dynamic-weighted feature similarity calculation. The proposed framework is tested on the query and reference dataset of CBCD task of TRECVID 2008. Our results are compared with the results of top-8 most successful techniques submitted to this task. Promising results are obtained in terms of both effectiveness and efficiency.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jvcir.2010.07.001</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3203
ispartof Journal of visual communication and image representation, 2010-11, Vol.21 (8), p.838-849
issn 1047-3203
1095-9076
language eng
recordid cdi_proquest_miscellaneous_831170549
source ScienceDirect Journals (5 years ago - present)
subjects Activity matching
Clips
Content-based copy detection
Face detection
Facial
Matching
MPEG-7
Reproduction
Segments
Shot
Subsequence matching
Tasks
Time series analysis
Video copy detection
Visual
Visual ques
title Video copy detection using multiple visual cues and MPEG-7 descriptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video%20copy%20detection%20using%20multiple%20visual%20cues%20and%20MPEG-7%20descriptors&rft.jtitle=Journal%20of%20visual%20communication%20and%20image%20representation&rft.au=Kuecuektunc,%20Onur&rft.date=2010-11-01&rft.volume=21&rft.issue=8&rft.spage=838&rft.epage=849&rft.pages=838-849&rft.issn=1047-3203&rft.eissn=1095-9076&rft_id=info:doi/10.1016/j.jvcir.2010.07.001&rft_dat=%3Cproquest_cross%3E831170549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831170549&rft_id=info:pmid/&rft_els_id=S1047320310000957&rfr_iscdi=true