Video copy detection using multiple visual cues and MPEG-7 descriptors
We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies...
Gespeichert in:
Veröffentlicht in: | Journal of visual communication and image representation 2010-11, Vol.21 (8), p.838-849 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies facial frames/shots in a video clip. Matching faces with extended body regions gives the flexibility to discriminate the same person (e.g., an anchor man or a political leader) in different events or scenes. In activity subsequence matching part, a spatio-temporal sequence matching technique is employed to match video clips/segments that are similar in terms of activity. Lastly, the non-facial shots are matched using low-level MPEG-7 descriptors and dynamic-weighted feature similarity calculation. The proposed framework is tested on the query and reference dataset of CBCD task of TRECVID 2008. Our results are compared with the results of top-8 most successful techniques submitted to this task. Promising results are obtained in terms of both effectiveness and efficiency. |
---|---|
ISSN: | 1047-3203 1095-9076 |
DOI: | 10.1016/j.jvcir.2010.07.001 |