In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios

Amorphous calcium phosphates (ACP) were synthesized utilizing poly(ethylene glycol) as stabilizing additive at low temperature. Effects of aging time, pH value, reactant and initial Ca/P atomic ratio on the phase and chemical composition of calcium phosphate precipitates were investigated by powder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2007-12, Vol.18 (12), p.2303-2308
Hauptverfasser: Li, Yanbao, Weng, Wenjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amorphous calcium phosphates (ACP) were synthesized utilizing poly(ethylene glycol) as stabilizing additive at low temperature. Effects of aging time, pH value, reactant and initial Ca/P atomic ratio on the phase and chemical composition of calcium phosphate precipitates were investigated by powder X-ray diffraction and induced coupled plasma atomic spectroscopy. It was found that ACP could be stabilized by poly(ethylene glycol) in the mother solution for more than 18 h at 5 degrees C, and Ca/P atomic ratios of ACP precipitates could be adjusted from 1.33 to 1.50 by controlling pH values and initial Ca/P atomic ratios. ACP precipitates were characterized by thermal gravity analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive spectrum. The results show that there is 4 wt% poly(ethylene glycol) in ACP powders without any contaminated ions, and the spherical particle size of ACP powders is 60 approximately 70 nm in the diameter with uniform size distribution which endows it as a potential precursor to prepare crystalline calcium phosphate phases. ACP has potential to be used as biodegradable and/or bioresorbable biomaterials and tissue engineering scaffold.
ISSN:0957-4530
1573-4838
DOI:10.1007/s10856-007-3132-4