Sequential polyurethane-poly(methylmethacrylate) interpenetrating polymer networks as ureteral biomaterials: mechanical properties and comparative resistance to urinary encrustation
The mechanical properties and resistance to urinary encrustation of sequential-interpenetrating polymer networks (IPNs) composed of polyurethane (PU) and polymethylmethacrylate (PMMA), have been described. Mechanical properties were determined using tensile testing and dynamic mechanical analysis, w...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 1997-11, Vol.8 (11), p.713-717 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanical properties and resistance to urinary encrustation of sequential-interpenetrating polymer networks (IPNs) composed of polyurethane (PU) and polymethylmethacrylate (PMMA), have been described. Mechanical properties were determined using tensile testing and dynamic mechanical analysis, whereas resistance to encrustation was examined using an in vitro model for encrustation simulating in vivo encrustation. Maximum and minimum tensile strength at break, Young's modulus, storage and loss moduli were associated with PMMA and PU, respectively. IPNs demonstrated intermediate mechanical properties which were dependent on the concentrations of the component polymers. Conversely, maximum elongation at break was observed for PU and this parameter decreased as the concentration of PMMA increased in the IPN. The dynamic mechanical damping parameter, tan delta, was similar for all IPNs at 37 degrees C. Increased advancing and decreased receding contact angles were observed for IPNs in comparison with the native PU. The rate and extent of encrustation, measured as the percentage surface coverage, was similar for PU, IPNs and PMMA. In contrast, encrustation on polyhydroxyethylmethacrylate, a model hydrogel, was greater than observed for the IPNs or component polymers. No apparent correlation was observed between the rate and/or extent of encrustation and polymer contact angle. It is concluded that these IPNs may be of clinical benefit in patients providing stent resistance to extrinsic compression of the ureter in comparison with native PU. The comparable resistance to encrustation between the IPNs and PU indicates that the use of IPNs should not be restricted in this regard. |
---|---|
ISSN: | 0957-4530 1573-4838 |
DOI: | 10.1023/A:1018596109061 |