On reverse engineering of gene interaction networks using time course data with repeated measurements

Motivation: Gene expression measurements are the most common data source for reverse engineering gene interaction networks. When dealing with destructive sampling in time course experiments, it is common to average any available measurements for each time point and to treat this as the actual time s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2010-09, Vol.26 (18), p.2305-2312
Hauptverfasser: Morrissey, E. R., Juárez, M. A., Denby, K. J., Burroughs, N. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: Gene expression measurements are the most common data source for reverse engineering gene interaction networks. When dealing with destructive sampling in time course experiments, it is common to average any available measurements for each time point and to treat this as the actual time series data for fitting the network, neglecting the variability contained in the repeated measurements. Proceeding in such a way can affect the retrieved network topology. Results: We propose a fully Bayesian method for reverse engineering a gene interaction network, based on time course data with repeated measurements. The observations are treated as surrogate measurements of the underlying gene expression. As these measurements often contain outliers, we use a non-Gaussian specification for dealing with measurement error. The network interactions are assumed linear and an autoregressive model is specified, augmented with indicator variables that allow inference on the topology of the network. We analyse two in silico and one in vivo experiments, the latter dealing with the circadian clock in Arabidopsis thaliana. A systematic attenuation of the estimated regulation strengths and a concomitant overestimation of their precision is demonstrated when measurement error is disregarded. Thus, a clear improvement in the inferred topology for the synthetic datasets is demonstrated when this is included. Also, the influence of outliers in the retrieved network is demonstrated when using the in vivo data. Availability: Matlab code and data used in the article are available from http://go.warwick.ac.uk/majuarez/home/materials. Contact: m.a.juarez@warwick.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btq421