Studies on native ribosomal subunits from rat liver. Evidence for activities associated with native 40S subunits that affect the interaction with acetylphenylalanyl-tRNA, methionyl-tRNAf, and 60S subunits

The binding of the initiator tRNA Met-tRNAf, and of acetylphenylalanyl-tRNA, has been examined with rat liver 40S subunits derived from 80S ribosomes by dissociation with native 40S subunits sedimented from the postmicrosomal fraction and with native 40S subunits extracted with high salt-containing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1975-12, Vol.14 (24), p.5328-5335
Hauptverfasser: Sadnik, I, Herrera, F, McCuiston, J, Thompson, H A, Moldave, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The binding of the initiator tRNA Met-tRNAf, and of acetylphenylalanyl-tRNA, has been examined with rat liver 40S subunits derived from 80S ribosomes by dissociation with native 40S subunits sedimented from the postmicrosomal fraction and with native 40S subunits extracted with high salt-containing solutions. Binding of Met-tRNAf and acetylphenylalanyl-tRNA to derived and to salt-extracted native 40S subunits is observed in the presence of the appropriate polynucleotide template and a highly purified binding factor obtain from the soluble fraction of rat liver homogenates (R.L. IF-1). Native 40S subunits bind acetylphenylalanyl-tRNA in a reaction that requires poly(U) but not exogenous binding factor; however, Met-tRNAf is not bound to native subunits, even when supplemented with the soluble binding factor, or under conditions where factor-independent, high Mg2+-stimulated binding is observed with the derived and the salt-washed native 40S subunits. The extract obtained from native 40S subunits promotes the binding of acetylphenylalanyl-tRNA but not Met-tRNAf to derived and to salt-extracted native subunits. The addition of native 40S extract to incubations containing R.L. IF-1, Met-tRNAf, and derived 40S subunits, inhibits the formation of 40S-Met-tRNAf complex. These data suggest that the binding activity that is specific for 40S subunits and initiator tRNA, and an activity that inhibits the interaction with Met-tRNAf specifically, are both associated with native 40S subunits, and can be extracted from them by treatment with high salt-containing solutions. Derived 40S subunits react quantitatively with 60S particles to form 80S ribosomes which do not bind acetylphenylalanyl-tRNA with binding factor R.L. IF-1. Native 40S subunits react only partly with 60S subunits; about half of the native 40S subunit population forms 80S ribosomes which do not subsequently bind acetylphenylalanyl-tRNA; the remaining native 40S subunits which do not react with 60S particles bind acetylphenylalanyl-tRNA but to a lesser extent. When preformed native 40S-acetylphenylalanyl-tRNA complex is incubated with 60S subunits, about half of the subunits form an 80S-acetylphenylalanyl-tRNA complex, while the rest remains as 40S-acetylphenylalanyl-tRNA. The addition of native 40S subunit salt extract to incubations containing preformed 80S ribosomes dissociates the particles to subunits. These data suggest that in addition to the initiator tRNA binding activity and the activity that in
ISSN:0006-2960
DOI:10.1021/bi00695a017