Tubulin synthesis during ciliogenesis in the mouse oviduct

We reported earlier that tubulin levels increase in the developing mouse oviduct during that period after birth when ciliogenesis is at a maximum (Staprans, I., and Dirksen, E. R. (1974) J. Cell Biol., 62, 164). To determine the degree to which de novo synthesis and tubulin pools contribute to this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 1975-09, Vol.46 (1), p.1-13
Hauptverfasser: Dirksen, Ellen Roter, Staprans, Ilona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We reported earlier that tubulin levels increase in the developing mouse oviduct during that period after birth when ciliogenesis is at a maximum (Staprans, I., and Dirksen, E. R. (1974) J. Cell Biol., 62, 164). To determine the degree to which de novo synthesis and tubulin pools contribute to this increase, [ 3H]leucine-incorporation experiments were performed in vivo and in culture. Soluble, particulate and axonemal fractions, obtained from homogenized oviducts of 3-, 5-, 8- and 12-day-old suckling mice, were electrophoresed on sodium dodecyl sulfate gels and the specific activity of the tubulin band determined. The present work shows that more than 90% of the tubulin in 3-day-old and 75% in 5-day-old mouse oviducts is synthesized de novo. From both the in vivo and in culture experiments we conclude that although tubulin pools are present in mouse oviduct, they are continuously being replenished by newly synthesized protein as there is a rapid outflow from the soluble and particulate to the axonemal fraction into structures such as basal bodies and cilia. This burst of de novo tubulin synthesis corresponds to evidence from electron microscopic autoradiography, where label is present to a greater extent over centriole precursors and basal bodies than over other cell organelles. [ 3H]leucine incorporation into tubulin was inhibited by cycloheximide, demonstrating that we are dealing with synthesis, while colchicine below 10 −3, M concentration had no effect on tubulin assembly into axonemes.
ISSN:0012-1606
1095-564X
DOI:10.1016/0012-1606(75)90082-2