Ethanol and drug metabolism in mouse liver microsomes subsequent to lipid peroxidation-induced destruction of cytochrome P-450
Preincubation of mouse liver microsomes with NADPH resulted in malondialdehyde formation, destruction of cytochrome P-450, and decreased rates of aniline hydroxylation and N-demethylation of aminopyrine and ethylmorphine. These phenomena were more pronounced in phosphate than in Tris buffer. No redu...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 1974-11, Vol.61 (1), p.258-264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Preincubation of mouse liver microsomes with NADPH resulted in malondialdehyde formation, destruction of cytochrome P-450, and decreased rates of aniline hydroxylation and N-demethylation of aminopyrine and ethylmorphine. These phenomena were more pronounced in phosphate than in Tris buffer. No reduction in rates of NADPH-linked oxidation of ethanol or in the activities of NADPH oxidase and NADPH-cytochrome c reductase was observed. While addition of EDTA to preincubation mixtures prevented lipid peroxidation, loss of cytochrome P-450, and inactivation of the drug-metabolizing capacity of microsomes, it did not alter ethanol oxidation rates and the activities of NADPH oxidase and NADPH-cytochrome c reductase. These findings argue against the involvement of cytochrome P-450 in the microsomal ethanol-oxidizing system. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/0006-291X(74)90561-0 |