Isolation of ouabain-resistant human diploid fibroblasts

Seventeen clones resistant to the cytotoxic action of ouabain were isolated in culture by direct selection from 5 independent strains of diploid human fibroblasts. Resistant clones were recovered at frequencies on the order of 10 −7 per wild type cell selected from populations treated with the mutag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 1974-11, Vol.3 (3), p.221-226
Hauptverfasser: Mankovitz, R., Buchwald, M., Baker, R.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seventeen clones resistant to the cytotoxic action of ouabain were isolated in culture by direct selection from 5 independent strains of diploid human fibroblasts. Resistant clones were recovered at frequencies on the order of 10 −7 per wild type cell selected from populations treated with the mutagen EMS, but no resistant cells were detected among 10 8 unmutagenized cells. Most selected clones remained ouabain-resistant following further propagation in the absence of drug. The growth of wild type cells was inhibited by 50% at ouabain concentrations of 2–5 × 10 −8 M, while resistant clones required 15–180 fold higher drug concentrations to cause equivalent inhibition. Ouabain-resistant clones showed increased resistance of K+ transport function to ouabain inhibition that paralleled their increased resistance to growth inhibition. Initial experiments suggest that under selective conditions the resistant diploid fibroblasts differ significantly from wild type in binding of 3H-ouabain per unit surface area. The ouabain-resistant cells were similar to wild type in transport properties unrelated to ouabain inhibition. Resistant cells had normal karyotypes and senesced with a lifespan similar to control clones. The ouabain-resistant phenotypes of these diploid human fibroblast isolates apparently reflect point mutations that specifically affect the Na+/K+ transport ATPase with respect to ouabain-binding and/or response to bound ouabain.
ISSN:0092-8674
1097-4172
DOI:10.1016/0092-8674(74)90135-4