The isolation of hormone-sensitive rat hepatocytes by a modified enzymatic technique
Hepatocytes that are similar to the perfused liver in glucagon sensitivity can be obtained in a high, reproducible yield by modifications of the well-known enzymatic technique for the preparation of isolated liver cells. The major modifications are: (a) a simple, economic, and temperature-controlled...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 1974-08, Vol.163 (2), p.600-608 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hepatocytes that are similar to the perfused liver in glucagon sensitivity can be obtained in a high, reproducible yield by modifications of the well-known enzymatic technique for the preparation of isolated liver cells. The major modifications are: (a) a simple, economic, and temperature-controlled apparatus for the recirculating perfusion of the isolated rat liver; (b) the use of substrate-fortified calcium-free Krebs-Henseleit bicarbonate buffer; and (c) high perfusion rates, which lead to the isolation of hepatocytes with normal ultrastructure and metabolic activities.
From 4 × 10
8 to 5 × 10
8 cells can be routinely isolated from an 8- to 10-g liver independent of the collagenase preparations applied. The rat liver cells are viable (90–95%) by various criteria including electron microscopy and exclusion of 0.2% trypan blue. When studying various incubation techniques, it was observed that the use of gelatin in the medium is preferred as compared to albumin Fraction V or fatty acid-free albumin which tended to inhibit gluconeogenic rates from various substrates in calcium-free medium. Addition of calcium chloride to the incubation medium strikingly improved gluconeogenesis from lactate. Various procedures for calculating the number of cells corresponding to 1 g wet liver tissue are discussed in detail. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/0003-9861(74)90519-0 |