Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures
Sub-wavelength antireflective structures are fabricated on a silicon nitride passivation layer of a Ga₀.₅In₀.₅P/GaAs/Ge triple-junction solar cell using polystyrene nanosphere lithography followed by anisotropic etching. The fabricated structures enhance optical transmission in the ultraviolet wavel...
Gespeichert in:
Veröffentlicht in: | Optics express 2010-09, Vol.18 Suppl 3 (S3), p.A308-A313 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sub-wavelength antireflective structures are fabricated on a silicon nitride passivation layer of a Ga₀.₅In₀.₅P/GaAs/Ge triple-junction solar cell using polystyrene nanosphere lithography followed by anisotropic etching. The fabricated structures enhance optical transmission in the ultraviolet wavelength range, compared to a conventional single-layer antireflective coating (ARC). The transmission improvement contributes to an enhanced photocurrent, which is also verified by the external quantum efficiency characterization of the fabricated solar cells. Under one-sun illumination, the short-circuit current of a cell with sub-wavelength structures is enhanced by 46.1% and 3.4% due to much improved optical transmission and current matching, compared to cells without an ARC and with a conventional SiN(x) ARC, respectively. Further optimizations of the sub-wavelength structures including the periodicity and etching depth are conducted by performing comprehensive calculations based on a rigorous couple-wave analysis method. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.18.00A308 |