Solving the Probabilistic TSP with Ant Colony Optimization

In this paper, we describe new ways to apply Ant Colony Optimization (ACO) to the Probabilistic Traveling Salesperson Problem (PTSP). PTSP is a stochastic extension of the well known Traveling Salesperson Problem (TSP), where each customer will require a visit only with a certain probability. The go...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical modelling and algorithms 2005-01, Vol.3 (4), p.403-425
Hauptverfasser: Branke, J rgen, Guntsch, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we describe new ways to apply Ant Colony Optimization (ACO) to the Probabilistic Traveling Salesperson Problem (PTSP). PTSP is a stochastic extension of the well known Traveling Salesperson Problem (TSP), where each customer will require a visit only with a certain probability. The goal is to find an a priori tour visiting all customers with minimum expected length, customers not requiring a visit simply being skipped in the tour.We show that ACO works well even when only an approximative evaluation function is used, which speeds up the algorithm, leaving more time for the actual construction. As we demonstrate, this idea can also be applied successfully to other state-of-the-art heuristics. Furthermore, we present new heuristic guidance schemes for ACO, better adapted to the PTSP than what has been used previously. We show that these modifications lead to significant improvements over the standard ACO algorithm, and that the resulting ACO is at least competitive to other state-of-the-art heuristics.
ISSN:1570-1166
1572-9214
DOI:10.1007/s10852-005-2585-z