Online adaptive utilization control for real-time embedded multiprocessor systems

Many embedded systems have stringent real-time constraints. An effective technique for meeting real-time constraints is to keep the processor utilization on each node at or below the schedulable utilization bound, even though each task’s actual execution time may have large uncertainties and deviate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems architecture 2010-09, Vol.56 (9), p.463-473
Hauptverfasser: Yao, Jianguo, Liu, Xue, Gu, Zonghua, Wang, Xiaorui, Li, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many embedded systems have stringent real-time constraints. An effective technique for meeting real-time constraints is to keep the processor utilization on each node at or below the schedulable utilization bound, even though each task’s actual execution time may have large uncertainties and deviate a lot from its estimated value. Recently, researchers have proposed solutions based on Model Predictive Control (MPC) for the utilization control problem. Although these approaches can handle a limited range of execution time estimation errors, the system may suffer performance deterioration or even become unstable with large estimation errors. In this paper, we present two online adaptive optimal control techniques, one is based on Recursive Least Squares (RLS) based model identification plus Linear Quadratic (LQ) optimal controller; the other one is based on Adaptive Critic Design (ACD). Simulation experiments demonstrate both the LQ optimal controller and ACD-based controller have better performance than the MPC-based controller and the ACD-based controller has the smallest aggregate tracking errors.
ISSN:1383-7621
1873-6165
DOI:10.1016/j.sysarc.2010.06.002