Query Rewriting Using Monolingual Statistical Machine Translation

Long queries often suffer from low recall in Web search due to conjunctive term matching. The chances of matching words in relevant documents can be increased by rewriting query terms into new terms with similar statistical properties. We present a comparison of approaches that deploy user query log...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational linguistics - Association for Computational Linguistics 2010-09, Vol.36 (3), p.569-582
Hauptverfasser: Riezler, Stefan, Liu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long queries often suffer from low recall in Web search due to conjunctive term matching. The chances of matching words in relevant documents can be increased by rewriting query terms into new terms with similar statistical properties. We present a comparison of approaches that deploy user query logs to learn rewrites of query terms into terms from the document space. We show that the best results are achieved by adopting the perspective of bridging the “lexical chasm” between queries and documents by translating from a source language of user queries into a target language of Web documents. We train a state-of-the-art statistical machine translation model on query-snippet pairs from user query logs, and extract expansion terms from the query rewrites produced by the monolingual translation system. We show in an extrinsic evaluation in a real-world Web search task that the combination of a query-to-snippet translation model with a query language model achieves improved contextual query expansion compared to a state-of-the-art query expansion model that is trained on the same query log data.
ISSN:0891-2017
1530-9312
DOI:10.1162/coli_a_00010