Information-theoretic optimization of chemical sensors

A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2010-06, Vol.148 (1), p.298-306
Hauptverfasser: Vergara, Alexander, Muezzinoglu, Mehmet K., Rulkov, Nikolai, Huerta, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 1
container_start_page 298
container_title Sensors and actuators. B, Chemical
container_volume 148
creator Vergara, Alexander
Muezzinoglu, Mehmet K.
Rulkov, Nikolai
Huerta, Ramon
description A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between two probability distributions. We argue that maximizing this measure over a controllable operating parameter of a sensing element promotes robust odor discrimination. We demonstrate on a sample dataset that tuning the operating temperature of a metal oxide sensor based on the suggested criterion not only yields a substantial improvement in classification performance but also informs about those operating temperatures that cause a total confusion in the odor discrimination.
doi_str_mv 10.1016/j.snb.2010.04.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822511463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400510003849</els_id><sourcerecordid>822511463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-8d544e20d22a2fa954e751242af9c9dec262112e086e344a08ad4dc4afca151f3</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKs_wN3dubp18roPXEnxUSi40XWIyYSm3HtTk1TQX29qXQsHhhnON3AOIdcUFhRoc7tdpOl9waDsIIrghMxo1_KaQ9uekhn0TNYCQJ6Ti5S2ACB4AzPSrCYX4qizD1OdNxgiZm-qsMt-9N-_5yq4ymxw9EYPVcIphZguyZnTQ8Krvzknb48Pr8vnev3ytFrer2vDWZ_rzkohkIFlTDOneymwlZQJpl1veouGNYxShtA1yIXQ0GkrrBHaGU0ldXxObo5_dzF87DFlNfpkcBj0hGGfVMeYpFQ0vDjp0WliSCmiU7voRx2_FAV1qEhtValIHSpSIIqgMHdHBkuET49RJeNxMmh9RJOVDf4f-geCwm7S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822511463</pqid></control><display><type>article</type><title>Information-theoretic optimization of chemical sensors</title><source>Elsevier ScienceDirect Journals</source><creator>Vergara, Alexander ; Muezzinoglu, Mehmet K. ; Rulkov, Nikolai ; Huerta, Ramon</creator><creatorcontrib>Vergara, Alexander ; Muezzinoglu, Mehmet K. ; Rulkov, Nikolai ; Huerta, Ramon</creatorcontrib><description>A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between two probability distributions. We argue that maximizing this measure over a controllable operating parameter of a sensing element promotes robust odor discrimination. We demonstrate on a sample dataset that tuning the operating temperature of a metal oxide sensor based on the suggested criterion not only yields a substantial improvement in classification performance but also informs about those operating temperatures that cause a total confusion in the odor discrimination.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2010.04.040</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Actuators ; Discrimination ; Gas-sensor optimization ; Information theory ; Kullback–Leibler distance ; Metal oxides ; Metal–oxide gas sensors ; Odor discrimination ; Odors ; Operating temperature ; Optimization ; Sensors ; Tuning</subject><ispartof>Sensors and actuators. B, Chemical, 2010-06, Vol.148 (1), p.298-306</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-8d544e20d22a2fa954e751242af9c9dec262112e086e344a08ad4dc4afca151f3</citedby><cites>FETCH-LOGICAL-c329t-8d544e20d22a2fa954e751242af9c9dec262112e086e344a08ad4dc4afca151f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400510003849$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Vergara, Alexander</creatorcontrib><creatorcontrib>Muezzinoglu, Mehmet K.</creatorcontrib><creatorcontrib>Rulkov, Nikolai</creatorcontrib><creatorcontrib>Huerta, Ramon</creatorcontrib><title>Information-theoretic optimization of chemical sensors</title><title>Sensors and actuators. B, Chemical</title><description>A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between two probability distributions. We argue that maximizing this measure over a controllable operating parameter of a sensing element promotes robust odor discrimination. We demonstrate on a sample dataset that tuning the operating temperature of a metal oxide sensor based on the suggested criterion not only yields a substantial improvement in classification performance but also informs about those operating temperatures that cause a total confusion in the odor discrimination.</description><subject>Actuators</subject><subject>Discrimination</subject><subject>Gas-sensor optimization</subject><subject>Information theory</subject><subject>Kullback–Leibler distance</subject><subject>Metal oxides</subject><subject>Metal–oxide gas sensors</subject><subject>Odor discrimination</subject><subject>Odors</subject><subject>Operating temperature</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Tuning</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWKs_wN3dubp18roPXEnxUSi40XWIyYSm3HtTk1TQX29qXQsHhhnON3AOIdcUFhRoc7tdpOl9waDsIIrghMxo1_KaQ9uekhn0TNYCQJ6Ti5S2ACB4AzPSrCYX4qizD1OdNxgiZm-qsMt-9N-_5yq4ymxw9EYPVcIphZguyZnTQ8Krvzknb48Pr8vnev3ytFrer2vDWZ_rzkohkIFlTDOneymwlZQJpl1veouGNYxShtA1yIXQ0GkrrBHaGU0ldXxObo5_dzF87DFlNfpkcBj0hGGfVMeYpFQ0vDjp0WliSCmiU7voRx2_FAV1qEhtValIHSpSIIqgMHdHBkuET49RJeNxMmh9RJOVDf4f-geCwm7S</recordid><startdate>20100630</startdate><enddate>20100630</enddate><creator>Vergara, Alexander</creator><creator>Muezzinoglu, Mehmet K.</creator><creator>Rulkov, Nikolai</creator><creator>Huerta, Ramon</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20100630</creationdate><title>Information-theoretic optimization of chemical sensors</title><author>Vergara, Alexander ; Muezzinoglu, Mehmet K. ; Rulkov, Nikolai ; Huerta, Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-8d544e20d22a2fa954e751242af9c9dec262112e086e344a08ad4dc4afca151f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actuators</topic><topic>Discrimination</topic><topic>Gas-sensor optimization</topic><topic>Information theory</topic><topic>Kullback–Leibler distance</topic><topic>Metal oxides</topic><topic>Metal–oxide gas sensors</topic><topic>Odor discrimination</topic><topic>Odors</topic><topic>Operating temperature</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vergara, Alexander</creatorcontrib><creatorcontrib>Muezzinoglu, Mehmet K.</creatorcontrib><creatorcontrib>Rulkov, Nikolai</creatorcontrib><creatorcontrib>Huerta, Ramon</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vergara, Alexander</au><au>Muezzinoglu, Mehmet K.</au><au>Rulkov, Nikolai</au><au>Huerta, Ramon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-theoretic optimization of chemical sensors</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2010-06-30</date><risdate>2010</risdate><volume>148</volume><issue>1</issue><spage>298</spage><epage>306</epage><pages>298-306</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between two probability distributions. We argue that maximizing this measure over a controllable operating parameter of a sensing element promotes robust odor discrimination. We demonstrate on a sample dataset that tuning the operating temperature of a metal oxide sensor based on the suggested criterion not only yields a substantial improvement in classification performance but also informs about those operating temperatures that cause a total confusion in the odor discrimination.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2010.04.040</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2010-06, Vol.148 (1), p.298-306
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_822511463
source Elsevier ScienceDirect Journals
subjects Actuators
Discrimination
Gas-sensor optimization
Information theory
Kullback–Leibler distance
Metal oxides
Metal–oxide gas sensors
Odor discrimination
Odors
Operating temperature
Optimization
Sensors
Tuning
title Information-theoretic optimization of chemical sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-theoretic%20optimization%20of%20chemical%20sensors&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Vergara,%20Alexander&rft.date=2010-06-30&rft.volume=148&rft.issue=1&rft.spage=298&rft.epage=306&rft.pages=298-306&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2010.04.040&rft_dat=%3Cproquest_cross%3E822511463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822511463&rft_id=info:pmid/&rft_els_id=S0925400510003849&rfr_iscdi=true