Information-theoretic optimization of chemical sensors
A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2010-06, Vol.148 (1), p.298-306 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between two probability distributions. We argue that maximizing this measure over a controllable operating parameter of a sensing element promotes robust odor discrimination. We demonstrate on a sample dataset that tuning the operating temperature of a metal oxide sensor based on the suggested criterion not only yields a substantial improvement in classification performance but also informs about those operating temperatures that cause a total confusion in the odor discrimination. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2010.04.040 |