Information-theoretic optimization of chemical sensors

A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2010-06, Vol.148 (1), p.298-306
Hauptverfasser: Vergara, Alexander, Muezzinoglu, Mehmet K., Rulkov, Nikolai, Huerta, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between two probability distributions. We argue that maximizing this measure over a controllable operating parameter of a sensing element promotes robust odor discrimination. We demonstrate on a sample dataset that tuning the operating temperature of a metal oxide sensor based on the suggested criterion not only yields a substantial improvement in classification performance but also informs about those operating temperatures that cause a total confusion in the odor discrimination.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2010.04.040