A posteriori error estimates and domain decomposition with nonmatching grids

Let F be a nonlinear mapping defined from a Hilbert space X into its dual X', and let x be in X the solution of F(x)=0. Assume that, a priori, the zone where the gradient of the function x has a large variation is known. The aim of this article is to prove a posteriori error estimates for the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2005-10, Vol.23 (3), p.241-263
Hauptverfasser: Pousin, J., Sassi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F be a nonlinear mapping defined from a Hilbert space X into its dual X', and let x be in X the solution of F(x)=0. Assume that, a priori, the zone where the gradient of the function x has a large variation is known. The aim of this article is to prove a posteriori error estimates for the problem F(x)=0 when it is approximated with a Petrov-Galerkin finite element method combined with a domain decomposition method with nonmatching grids. A residual estimator for a model semi-linear problem is proposed. We prove that this estimator is asymptotically equivalent to a simplified one adapted to parallel computing. Some numerical results are presented, showing the practical efficiency of the estimator.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-004-1779-7