Properties of mitochondrial thymidine kinases of parental and enzyme-deficient HeLa cells

HeLa(BU25), a mutant subline of HeLa S3 cells, contains mitochondrial thymidine (dT) kinase, despite a marked deficiency in the dT kinase activity of the “cytosol” (high-speed supernatant) cell fraction. The HeLa(BU25) mitochondrial dT kinase differs from the “cytosol” enzyme of parental HeLa S3 cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 1973-10, Vol.158 (2), p.503-513
Hauptverfasser: Kit, Saul, Leung, Wai-Choi, Trkula, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HeLa(BU25), a mutant subline of HeLa S3 cells, contains mitochondrial thymidine (dT) kinase, despite a marked deficiency in the dT kinase activity of the “cytosol” (high-speed supernatant) cell fraction. The HeLa(BU25) mitochondrial dT kinase differs from the “cytosol” enzyme of parental HeLa S3 cells in sedimentation coefficient, ability to utilize ribonucleoside 5′-triphosphates other than ATP as phosphate donors, sensitivity to inhibition by dCTP, and in disc polyacrylamide gel electrophoretic (disc PAGE) patterns. Two dT kinase activities [relative mobilities (Rm) of 0.4 and 0.6–0.7] were detected after disc PAGE of HeLa(BU25) mitochondrial extracts and both activities migrated more rapidly than the typical cytosol enzyme (Rm = 0.2) of dT kinase-positive human cells. The 0.6 to 0.7-Rm dT kinase of HeLa(BU25) mitochondria, but not the 0.4-Rm activity, utilized GTP and UTP, as well as ATP, as phosphate donors. HeLa S3 mitochondrial fractions contained the 0.6–0.7 Rm and the 0.4-Rm activities, and in addition, a “cytosol-like” 0.2-Rm activity. The 0.6 to 0.7-Rm dT kinase of HeLa S3 mitochondria utilized either UTP or ATP as phosphate donors, but the 0.4- and 0.2-Rm dT kinases utilized only ATP. Similarly, the HeLa S3 cytosol dT kinase efficiently utilized ATP, but not UTP, as a phosphate donor.
ISSN:0003-9861
1096-0384
DOI:10.1016/0003-9861(73)90542-0