Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles

Size and shape of nanoparticles are generally controlled by external influence factors such as reaction temperature, time, precursor, and/or surfactant concentration. Lack of external influence may eventually lead to unregulated growth of nanoparticles and possibly loss of their nanoscale properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-12, Vol.4 (12), p.7451-7458
Hauptverfasser: Luo, Weijie, Zhu, Changfeng, Su, Shao, Li, Di, He, Yao, Huang, Qing, Fan, Chunhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Size and shape of nanoparticles are generally controlled by external influence factors such as reaction temperature, time, precursor, and/or surfactant concentration. Lack of external influence may eventually lead to unregulated growth of nanoparticles and possibly loss of their nanoscale properties. Here we report a gold nanoparticle (AuNPs)-based self-catalyzed and self-limiting system that exploits the glucose oxidase-like catalytic activity of AuNPs. We find that the AuNP-catalyzed glucose oxidation in situ produces hydrogen peroxide (H2O2) that induces the AuNPs’ seeded growth in the presence of chloroauric acid (HAuCl4). This crystal growth of AuNPs is internally regulated via two negative feedback factors, size-dependent activity decrease of AuNPs and product (gluconic acid)-induced surface passivation, leading to a rapidly self-limiting system. Interestingly, the size, shape, and catalytic activities of AuNPs are simultaneously controlled in this system. We expect that it provides a new method for controlled synthesis of novel nanomaterials, design of “smart” self-limiting nanomedicine, as well as in-depth understanding of self-limiting systems in nature.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn102592h