Experimental re-evaluation of the γ-ray energy and emission probability for the 159 keV transition in 238U following the α-decay of 242Pu

Because of the very low specific activity of (242)Pu, the non-destructive assay of this isotope by means of conventional high-resolution gamma-spectrometry (HRGS) is possible only for Pu samples highly rich in (242)Pu. For bulk samples suffering from the gamma self-attenuation and self-fluorescence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied radiation and isotopes 2011-02, Vol.69 (2), p.531-538
Hauptverfasser: Berlizov, A N, van Belle, P, Zuleger, E, Ottmar, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of the very low specific activity of (242)Pu, the non-destructive assay of this isotope by means of conventional high-resolution gamma-spectrometry (HRGS) is possible only for Pu samples highly rich in (242)Pu. For bulk samples suffering from the gamma self-attenuation and self-fluorescence effects, the only practical choice for the quantitative analysis of (242)Pu is the weak γ-line emitted in the 159 keV transition of its α-decay daughter (238)U. A recent study revealed a significant disagreement between the (242)Pu mass values in a 99.72% enriched (242)PuO(2) sample as reported by HRGS and neutron coincidence counting. This fact motivated the present study on the experimental re-evaluation of the γ-emission probability for the 159 keV transition using a combination of α-, γ- and mass-spectrometry techniques. The obtained new emission probability P(2)=(2.20±0.08)10(-6) turned out to be ≈35% smaller than the currently adopted value. The study also suggested a new value E(2)=159.018±0.016 keV for the energy of the respective γ-ray.
ISSN:1872-9800
DOI:10.1016/j.apradiso.2010.11.017