Elemental Depth Profiling of Fluoridated Hydroxyapatite: Saving Your Dentition by the Skin of Your Teeth?

Structural and chemical changes that arise from fluoridation of hydroxyapatite (Ca5(PO4)3OH or “HAp”), as representing the synthetic counterpart of tooth enamel, are investigated by X-ray photoelectron spectroscopy (XPS). Elemental depth profiles with a depth resolution on the nanometer scale were d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-12, Vol.26 (24), p.18750-18759
Hauptverfasser: Müller, Frank, Zeitz, Christian, Mantz, Hubert, Ehses, Karl-Heinz, Soldera, Flavio, Schmauch, Jörg, Hannig, Matthias, Hüfner, Stefan, Jacobs, Karin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural and chemical changes that arise from fluoridation of hydroxyapatite (Ca5(PO4)3OH or “HAp”), as representing the synthetic counterpart of tooth enamel, are investigated by X-ray photoelectron spectroscopy (XPS). Elemental depth profiles with a depth resolution on the nanometer scale were determined to reveal the effect of fluoridation in neutral (pH = 6.2) and acidic agents (pH = 4.2). With respect to the chemical composition and the crystal structure, XPS depth profiling reveals different effects of the two treatments. In both cases, however, the fluoridation affects the surface only on the nanometer scale, which is in contrast to recent literature with respect to XPS analysis on dental fluoridation, where depth profiles of F extending to several micrometers were reported. In addition to the elemental depth profiles, as published in various other studies, we also present quantitative depth profiles of the compounds CaF2, Ca(OH)2, and fluorapatite (FAp) that were recently proposed by a three-layer model concerning the fluoridation of HAp in an acidic agent. The analysis of our experimental data exactly reproduces the structural order of this model, however, on a scale that differs by nearly 2 orders of magnitude from previous predictions. The results also reveal that the amount of Ca(OH)2 and FAp is small compared to that of CaF2. Therefore, it has to be asked whether such narrow Ca(OH)2 and FAp layers really can act as protective layers for the enamel.
ISSN:0743-7463
1520-5827
DOI:10.1021/la102325e