A (6—4) photoproduct of 5-bromouracil

The photoreactions of 5-bromouracil (BrUra) induced by 254 nm radiation have received a significant amount of scrutiny over the years, both when induced in liquid aqueous solution and in the frozen state. The characterized photoproducts in the liquid state include uracil, 5,5′-diuracil ( I ) and a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemical & photobiological sciences 2011, Vol.10 (1), p.76-83
Hauptverfasser: Shetlar, Martin D., Basus, Vladimir J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The photoreactions of 5-bromouracil (BrUra) induced by 254 nm radiation have received a significant amount of scrutiny over the years, both when induced in liquid aqueous solution and in the frozen state. The characterized photoproducts in the liquid state include uracil, 5,5′-diuracil ( I ) and a variety of products arising from ring opening, while the photoreactivity of BrUra in ice using 254 nm radiation is very low. During examination of the photoreactions induced in BrUra in frozen aqueous solution by exposure to predominately UVB irradiation, we found that several products are formed. One of these products has an ultraviolet absorption spectrum similar to those associated with (6–4) adducts of the pyrimidine bases (λ max = 326 nm). Studies with 1 H and 13 C nuclear magnetic resonance spectroscopy and with mass spectrometry yielded data consistent with this compound indeed being a (6–4) product, namely 6-4′-(5′-bromopyrimidin-2′-one)-5,5-dihydroxy-5,6-dihydrouracil ( IIa ). The product IIa probably arises from an unstable precursor, namely 5-bromo-6-4′-(5′-bromopyrimidin-2′-one)-5-hydroxy-5,6-dihydrouracil ( IV ); this compound is a bromohydrin and, as such, is likely unstable to debromination to 6-4′-(5′-bromopyrimidin-2′-one)-5-oxo-5,6-dihydrouracil ( V ). Rehydration at the 5-position to form a gem diol would lead to IIa , the isolated product.
ISSN:1474-905X
1474-9092
DOI:10.1039/c0pp00242a