Nanoindentation of shock deformed alumina
In the current study, the experimental results on the nanoindentation response of both as prepared and shock recovered alumina of 10 μm grain size and identical processing history are presented and analyzed. The shock recovery experiments were deliberately conducted with gas gun arrangements at shoc...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010, Vol.527 (24), p.6478-6483 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the current study, the experimental results on the nanoindentation response of both as prepared and shock recovered alumina of 10
μm grain size and identical processing history are presented and analyzed. The shock recovery experiments were deliberately conducted with gas gun arrangements at shock pressures much above the Hugoniot Elastic Limit (HEL) of alumina. The nanoindentation experiments were conducted at 10–1000
mN load with a Berkovich indenter. The nanohardness and Young's modulus value of shock recovered alumina were always lower than those of the as prepared alumina samples. Subsequently, the detailed characterizations of the shock recovered alumina samples by X-ray diffraction, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were utilized to understand the reasons behind the drop in nanohardness and Young's modulus of shock recovered alumina samples. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2010.06.084 |