Cosmology with torsion: An alternative to cosmic inflation

We propose a simple scenario which explains why our Universe appears spatially flat, homogeneous and isotropic. We use the Einstein–Cartan–Kibble–Sciama (ECKS) theory of gravity which naturally extends general relativity to include the spin of matter. The torsion of spacetime generates gravitational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2010-11, Vol.694 (3), p.181-185
1. Verfasser: POPLAWSKI, Nikodem J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a simple scenario which explains why our Universe appears spatially flat, homogeneous and isotropic. We use the Einstein–Cartan–Kibble–Sciama (ECKS) theory of gravity which naturally extends general relativity to include the spin of matter. The torsion of spacetime generates gravitational repulsion in the early Universe filled with quarks and leptons, preventing the cosmological singularity: the Universe expands from a state of minimum but finite radius. We show that the dynamics of the closed Universe immediately after this state naturally solves the flatness and horizon problems in cosmology because of an extremely small and negative torsion density parameter, ΩS≈−10−69. Thus the ECKS gravity provides a compelling alternative to speculative mechanisms of standard cosmic inflation. This scenario also suggests that the contraction of our Universe preceding the bounce at the minimum radius may correspond to the dynamics of matter inside a collapsing black hole existing in another universe, which could explain the origin of the Big Bang.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2010.09.056