Negative Poisson's ratios as a common feature of cubic metals

Poisson's ratio is, for specified directions, the ratio of a lateral contraction to the longitudinal extension during the stretching of a material. Although a negative Poisson's ratio (that is, a lateral extension in response to stretching) is not forbidden by thermodynamics, this property...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1998-03, Vol.392 (6674), p.362-365
Hauptverfasser: Baughman, Ray H, Shacklette, Justin M, Zakhidov, Anvar A, Stafström, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poisson's ratio is, for specified directions, the ratio of a lateral contraction to the longitudinal extension during the stretching of a material. Although a negative Poisson's ratio (that is, a lateral extension in response to stretching) is not forbidden by thermodynamics, this property is generally believed to be rare in crystalline solids. In contrast to this belief, 69% of the cubic elemental metals have a negative Poisson's ratio when stretched along the [110] direction. For these metals, we find that correlations exist between the work function and the extremal values of Poisson's ratio for this stretch direction, which we explain using a simple electron-gas model. Moreover, these negative Poisson's ratios permit the existence, in the orthogonal lateral direction, of positive Poisson's ratios up to the stability limit of 2 for cubic crystals. Such metals having negative Poisson's ratios may find application as electrodes that amplify the response of piezoelectric sensors.
ISSN:0028-0836
1476-4687
DOI:10.1038/32842