Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition
There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that...
Gespeichert in:
Veröffentlicht in: | Nature materials 2010-10, Vol.9 (10), p.833-839 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that can exchange excitation energy, concentrating it to the centre of core–shell structures with radial gradients in the optical bandgap. We find an unusually sharp, reversible decay in photoemission that occurs as such filaments are cycled from ambient temperature to only 357 K, attributed to the strongly temperature-dependent second-order Auger process. Core–shell structures consisting of annular shells of mostly (6,5) SWNTs (
E
g
=1.21 eV) and cores with bandgaps smaller than those of the shell (
E
g
=1.17 eV (7,5)–0.98 eV (8,7)) demonstrate the concentration concept: broadband absorption in the ultraviolet–near-infrared wavelength regime provides quasi-singular photoemission at the (8,7) SWNTs. This approach demonstrates the potential of specifically designed collections of nanotubes to manipulate and concentrate excitons in unique ways.
Using optical antennas in optoelectronic devices could lead to improved device performance. Photoemission from the inner core of core–shell single-walled nanotube structures where the optical bandgap of the core is smaller than that of the outer shells demonstrates that these structures channel excitons thereby acting as optical concentrators. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat2832 |