On spectral expansions of piecewise smooth functions depending on the geodesic distance

We consider the expansion of a piecewise smooth function depending on the geodesic distance to some point in the eigenfunctions of the Beltrami-Laplace operator on an n -dimensional symmetric space of rank 1. We show that if the expansion converges at this point, then the function must have continuo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2010-06, Vol.46 (6), p.827-839
1. Verfasser: Alimov, Sh. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the expansion of a piecewise smooth function depending on the geodesic distance to some point in the eigenfunctions of the Beltrami-Laplace operator on an n -dimensional symmetric space of rank 1. We show that if the expansion converges at this point, then the function must have continuous derivatives up to and including the order ( n − 3)/2.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266110060078