On spectral expansions of piecewise smooth functions depending on the geodesic distance
We consider the expansion of a piecewise smooth function depending on the geodesic distance to some point in the eigenfunctions of the Beltrami-Laplace operator on an n -dimensional symmetric space of rank 1. We show that if the expansion converges at this point, then the function must have continuo...
Gespeichert in:
Veröffentlicht in: | Differential equations 2010-06, Vol.46 (6), p.827-839 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the expansion of a piecewise smooth function depending on the geodesic distance to some point in the eigenfunctions of the Beltrami-Laplace operator on an
n
-dimensional symmetric space of rank 1. We show that if the expansion converges at this point, then the function must have continuous derivatives up to and including the order (
n
− 3)/2. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266110060078 |