On Integer Values of Kloosterman Sums

This paper considers rational integer values of Kloosterman sums over finite fields of characteristic p > 3. We shall prove two main results. The first one is a congruence relation satisfied by possible integer values. One consequence is that there are no Kloosterman zeroes in the case of charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-08, Vol.56 (8), p.4011-4013
Hauptverfasser: Kononen, Keijo Petteri, Rinta-aho, Marko Juhani, Väänänen, Keijo O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers rational integer values of Kloosterman sums over finite fields of characteristic p > 3. We shall prove two main results. The first one is a congruence relation satisfied by possible integer values. One consequence is that there are no Kloosterman zeroes in the case of characteristic p > 3, which generalizes recent works by Shparlinski, Moisio, and Lisoněk on this subject. This, in turn, implies that there are no Dillon type bent functions in the case p > 3 , thus answering a question posed recently by Helleseth and Kholosha. Our other main result states that the Kloosterman sum obtains an integer value at a point if and only if the same sum lifted to any extension field remains an integer.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2010.2050806