On Integer Values of Kloosterman Sums
This paper considers rational integer values of Kloosterman sums over finite fields of characteristic p > 3. We shall prove two main results. The first one is a congruence relation satisfied by possible integer values. One consequence is that there are no Kloosterman zeroes in the case of charact...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2010-08, Vol.56 (8), p.4011-4013 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers rational integer values of Kloosterman sums over finite fields of characteristic p > 3. We shall prove two main results. The first one is a congruence relation satisfied by possible integer values. One consequence is that there are no Kloosterman zeroes in the case of characteristic p > 3, which generalizes recent works by Shparlinski, Moisio, and Lisoněk on this subject. This, in turn, implies that there are no Dillon type bent functions in the case p > 3 , thus answering a question posed recently by Helleseth and Kholosha. Our other main result states that the Kloosterman sum obtains an integer value at a point if and only if the same sum lifted to any extension field remains an integer. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2010.2050806 |