Product design and selection using fuzzy QFD and fuzzy MCDM approaches
Quality function deployment (QFD) is a useful analyzing tool in product design and development. To solve the uncertainty or imprecision in QFD, numerous researchers have applied the fuzzy set theory to QFD and developed various fuzzy QFD models. Three issues are investigated by examining their model...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2011, Vol.35 (1), p.482-496 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quality function deployment (QFD) is a useful analyzing tool in product design and development. To solve the uncertainty or imprecision in QFD, numerous researchers have applied the fuzzy set theory to QFD and developed various fuzzy QFD models. Three issues are investigated by examining their models. First, the extant studies focused on identifying important engineering characteristics and seldom explored the subsequent prototype product selection issue. Secondly, the previous studies usually use fuzzy number algebraic operations to calculate the fuzzy sets in QFD. This approach may cause a great deviation in the result from the correct value. Thirdly, few studies have paid attention to the competitive analysis in QFD. However, it can provide product developers with a large amount of valuable information. Aimed at these three issues, this study integrates fuzzy QFD and the prototype product selection model to develop a product design and selection (PDS) approach. In fuzzy QFD, the
α-cut operation is adopted to calculate the fuzzy set of each component. Competitive analysis and the correlations among engineering characteristics are also considered. In prototype product selection, engineering characteristics and the factors involved in product development are considered. A fuzzy multi-criteria decision making (MCDM) approach is proposed to select the best prototype product. A case study is given to illustrate the research steps for the proposed PDS method. The proposed method provides product developers with more useful information and precise analysis results. Thus, the PDS method can serve as a helpful decision-aid tool in product design. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2010.07.014 |