Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ]))

We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L super(r) sub(2)(D) in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ])).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2006-09, Vol.32 (3), p.163-171
Hauptverfasser: Abilov, V A, Abilov, M V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 3
container_start_page 163
container_title Analysis mathematica (Budapest)
container_volume 32
creator Abilov, V A
Abilov, M V
description We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L super(r) sub(2)(D) in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ])).
doi_str_mv 10.1007/s10476-006-0009-6
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_818830242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818830242</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_8188302423</originalsourceid><addsrcrecordid>eNqNjs9KxDAQxoMoWP88gLe52YLRpNlt43lx3YNHD4LIkpYUI01TM4nuvpjPZ4r14snDMN9832-GIeSCs2vOWH2DnC3qijI2Fbul1QHJ-FJKWtbi6ZBkjAtBhVyWx-QE8W1iKiky8rXSPigzwOhd02uL4DoIrxrUmJydsSoYN0xmF4d20giJDp8OPpQ3Ku0gNHtYu-iN9nSjvTVBA0b7A6ZTOKpWw0PymrwscrhX1ip4xjiW8HIFEzxqn9NdMas5-h3p_m9QnJGjTvWoz-d-Si7Xd4-rDU1Pv0eNYWsNtrrv1aBdxK3kUgpWLkrxf_Ibwd5rJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>818830242</pqid></control><display><type>article</type><title>Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ]))</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abilov, V A ; Abilov, M V</creator><creatorcontrib>Abilov, V A ; Abilov, M V</creatorcontrib><description>We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L super(r) sub(2)(D) in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ])).</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-006-0009-6</identifier><language>eng</language><subject>Approximation ; Deviation ; Estimates ; Mathematical analysis ; Mathematical models ; Sums</subject><ispartof>Analysis mathematica (Budapest), 2006-09, Vol.32 (3), p.163-171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abilov, V A</creatorcontrib><creatorcontrib>Abilov, M V</creatorcontrib><title>Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ]))</title><title>Analysis mathematica (Budapest)</title><description>We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L super(r) sub(2)(D) in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ])).</description><subject>Approximation</subject><subject>Deviation</subject><subject>Estimates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Sums</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNjs9KxDAQxoMoWP88gLe52YLRpNlt43lx3YNHD4LIkpYUI01TM4nuvpjPZ4r14snDMN9832-GIeSCs2vOWH2DnC3qijI2Fbul1QHJ-FJKWtbi6ZBkjAtBhVyWx-QE8W1iKiky8rXSPigzwOhd02uL4DoIrxrUmJydsSoYN0xmF4d20giJDp8OPpQ3Ku0gNHtYu-iN9nSjvTVBA0b7A6ZTOKpWw0PymrwscrhX1ip4xjiW8HIFEzxqn9NdMas5-h3p_m9QnJGjTvWoz-d-Si7Xd4-rDU1Pv0eNYWsNtrrv1aBdxK3kUgpWLkrxf_Ibwd5rJA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Abilov, V A</creator><creator>Abilov, M V</creator><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ]))</title><author>Abilov, V A ; Abilov, M V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_8188302423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>Deviation</topic><topic>Estimates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abilov, V A</creatorcontrib><creatorcontrib>Abilov, M V</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abilov, V A</au><au>Abilov, M V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ]))</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>32</volume><issue>3</issue><spage>163</spage><epage>171</epage><pages>163-171</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L super(r) sub(2)(D) in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ])).</abstract><doi>10.1007/s10476-006-0009-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2006-09, Vol.32 (3), p.163-171
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_miscellaneous_818830242
source SpringerLink Journals - AutoHoldings
subjects Approximation
Deviation
Estimates
Mathematical analysis
Mathematical models
Sums
title Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ]))
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certain%20problems%20of%20the%20approximation%20of%20functions%20in%20two%20variables%20by%20Fourier-Hermite%20sums%20in%20the%20space%20L%20sub(2)(%20Gamma%20%5Bsup2%20%5D,%20e%20super(-x)%20super(%5Bsup2%20%5D)%20super(-y)%20super(%5Bsup2%20%5D))&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Abilov,%20V%20A&rft.date=2006-09-01&rft.volume=32&rft.issue=3&rft.spage=163&rft.epage=171&rft.pages=163-171&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-006-0009-6&rft_dat=%3Cproquest%3E818830242%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=818830242&rft_id=info:pmid/&rfr_iscdi=true