Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ]))
We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L super(r) sub(2)(D) in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ])).
Gespeichert in:
Veröffentlicht in: | Analysis mathematica (Budapest) 2006-09, Vol.32 (3), p.163-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L super(r) sub(2)(D) in the space L sub(2)( Gamma [sup2 ], e super(-x) super([sup2 ]) super(-y) super([sup2 ])). |
---|---|
ISSN: | 0133-3852 1588-273X |
DOI: | 10.1007/s10476-006-0009-6 |