Genetic and Environmental Influence on Maize Kernel Proteome

Comparative targeted compositional analysis is currently an important element in the safety assessment of genetically modified plants. Profiling methods have been suggested as nontargeted tools to improve the detection of possible unintended effects. In this study, the capability of 2-dimensional el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2010-12, Vol.9 (12), p.6160-6168
Hauptverfasser: Anttonen, Mikko J., Lehesranta, Satu, Auriola, Seppo, Röhlig, Richard M., Engel, Karl-Heinz, Kärenlampi, Sirpa O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comparative targeted compositional analysis is currently an important element in the safety assessment of genetically modified plants. Profiling methods have been suggested as nontargeted tools to improve the detection of possible unintended effects. In this study, the capability of 2-dimensional electrophoresis to detect significant differences among seven conventional maize (Zea mays) cultivars grown in six different locations in Germany during two consecutive seasons was evaluated. Besides maize genotype, both geographic location and season had a significant effect on protein profiles. Differences as high as 55- and 53-fold in the quantity of specific proteins were recorded, the median observed difference being around 6- and 5-fold between the genotypes and growing locations, respectively. Understanding the variation in the quantity of individual proteins should help to put the variation of endogenous proteins and the novel proteins in the genetically modified plants in perspective. This together with the targeted analyses the profiling methods, including proteomics, could also help to get a deeper insight into the unintended alterations that might have occurred during the genetic modification process.
ISSN:1535-3893
1535-3907
DOI:10.1021/pr100251p