Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation

Epithelial-mesenchymal transition (EMT), a critical process of cancer invasion and metastasis, is associated with stemness property of cancer cells. Though Oct4 and Nanog are homebox transcription factors essential to the self-renewal of stem cells and are expressed in several cancers, the role of O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2010-12, Vol.70 (24), p.10433-10444
Hauptverfasser: Chiou, Shih-Hwa, Wang, Mong-Lien, Chou, Yu-Ting, Chen, Chi-Jen, Hong, Chun-Fu, Hsieh, Wang-Ju, Chang, Hsin-Tzu, Chen, Ying-Shan, Lin, Tzu-Wei, Hsu, Han-Sui, Wu, Cheng-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epithelial-mesenchymal transition (EMT), a critical process of cancer invasion and metastasis, is associated with stemness property of cancer cells. Though Oct4 and Nanog are homebox transcription factors essential to the self-renewal of stem cells and are expressed in several cancers, the role of Oct4/Nanog signaling in tumorigenesis is still elusive. Here microarray and quantitative real-time PCR analysis showed a parallel, elevated expression of Oct4 and Nanog in lung adenocarcinoma (LAC). Ectopic expressions of Oct4 and Nanog in LACs increased the percentage of CD133-expressing subpopulation and sphere formation, enhanced drug resistance, and promoted EMT. Ectopic expressions of Oct4 and Nanog activated Slug and enhanced the tumor-initiating capability of LAC. Furthermore, double knockdown of Oct4 and Nanog suppressed the expression of Slug, reversed the EMT process, blocked the tumorigenic and metastatic ability, and greatly improved the mean survival time of transplanted immunocompromised mice. The immunohistochemical analysis demonstrated that expressions of Oct4, Nanog, and Slug were present in high-grade LAC, and triple positivity of Oct4/Nanog/Slug indicated a worse prognostic value of LAC patients. Our results support the notion that the Oct4/Nanog signaling controls epithelial-mesenchymal transdifferentiation, regulates tumor-initiating ability, and promotes metastasis of LAC.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-10-2638