Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer
The chemical versatility of organic semiconductors promises to be of great use to electronics and spintronics. As an example, it is now demonstrated that the spin polarization of extracted carriers from an organic semiconductor device can be controlled by the insertion of a thin layer of polar mater...
Gespeichert in:
Veröffentlicht in: | Nature materials 2011-01, Vol.10 (1), p.39-44 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chemical versatility of organic semiconductors promises to be of great use to electronics and spintronics. As an example, it is now demonstrated that the spin polarization of extracted carriers from an organic semiconductor device can be controlled by the insertion of a thin layer of polar material. This approach opens up ideas for future spintronic device concepts.
Spintronics has shown a remarkable and rapid development, for example from the initial discovery of giant magnetoresistance in spin valves
1
to their ubiquity in hard-disk read heads in a relatively short time. However, the ability to fully harness electron spin as another degree of freedom in semiconductor devices has been slower to take off. One future avenue that may expand the spintronic technology base is to take advantage of the flexibility intrinsic to organic semiconductors (OSCs), where it is possible to engineer and control their electronic properties and tailor them to obtain new device concepts
2
. Here we show that we can control the spin polarization of extracted charge carriers from an OSC by the inclusion of a thin interfacial layer of polar material. The electric dipole moment brought about by this layer shifts the OSC highest occupied molecular orbital with respect to the Fermi energy of the ferromagnetic contact. This approach allows us full control of the spin band appropriate for charge-carrier extraction, opening up new spintronic device concepts for future exploitation. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat2912 |