Implementation of Full Patient Simulation Training in Surgical Residency

Purpose Simulated patient care has gained acceptance as a medical education tool but is underused in surgical training. To improve resident clinical management in critical situations relevant to the surgical patient, high-fidelity full patient simulation training was instituted at Baystate Medical C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of surgical education 2010-11, Vol.67 (6), p.393-399
Hauptverfasser: Fernandez, Gladys L., MD, Lee, Patrick C., MD, Page, David W., MD, D'Amour, Elizabeth M., RN, Wait, Richard B., MD, Seymour, Neal E., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Simulated patient care has gained acceptance as a medical education tool but is underused in surgical training. To improve resident clinical management in critical situations relevant to the surgical patient, high-fidelity full patient simulation training was instituted at Baystate Medical Center in 2005 and developed during successive years. We define surgical patient simulation as clinical management performed in a high fidelity environment using a manikin simulator. This technique is intended to be specifically modeled experiential learning related to the knowledge, skills, and behaviors that are fundamental to patient care. We report 3 academic years' use of a patient simulation curriculum. Methods Learners were PGY 1–3 residents; 26 simulated patient care experiences were developed based on (1) designation as a critical management problem that would otherwise be difficult to practice, (2) ability to represent the specific problem in simulation, (3) relevance to the American Board of Surgery (ABS) certifying examination, and/or (4) relevance to institutional quality or morbidity and mortality reports. Although training started in 2005, data are drawn from the period of systematic and mandatory training spanning from July 2006 to June 2009. Training occurred during 1-hour sessions using a computer-driven manikin simulator (METI, Sarasota, Florida). Educational content was provided either before or during presimulation briefing sessions. Scenario areas included shock states, trauma and critical care case management, preoperative processes, and postoperative conditions and complications. All sessions were followed by facilitated debriefing. Likert scale-based multi-item assessments of core competency in medical knowledge, patient care, diagnosis, management, communication, and professionalism were used to generate a performance score for each resident for each simulation (percentage of best possible score). Performance was compared across PGYs by repeated-measures analysis of variance and Wilcoxon rank sum tests. Results Residents participated in 4.5 ± 1.4 sessions per academic year. Compliance with scheduled training was 88%, 90%, and 99% over successive years. Performance data were available for 39 PGY1, 2, and 3 residents. Ten individual residents could be followed between PGY1 and PGY2. For these individuals, improvement in mean performance was detected for the PGY2 (81% ± 5% vs 86% ± 4%; p < 0.01). Performance improvement was also detected fo
ISSN:1931-7204
1878-7452
DOI:10.1016/j.jsurg.2010.07.005