Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa

Several histone deacetylase inhibitors (HDACi), which have recently entered early clinical trials, exert their anticancer activity in part through the induction of apoptosis although the precise mechanism of this induction is not known. Induction of apoptosis by structurally diverse HDACi in primary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2007-08, Vol.21 (8), p.1773-1782
Hauptverfasser: INOUE, S, RILEY, J, GANT, T. W, DYER, M. J. S, COHEN, G. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several histone deacetylase inhibitors (HDACi), which have recently entered early clinical trials, exert their anticancer activity in part through the induction of apoptosis although the precise mechanism of this induction is not known. Induction of apoptosis by structurally diverse HDACi in primary cells from patients with chronic lymphocytic leukemia (CLL) and different leukemic cell lines was mediated by the Bcl-2 regulated intrinsic pathway and demonstrated a requirement for de novo protein synthesis. A marked time-dependent induction of the pro-apoptotic BH3-only proteins, Bim, Noxa and Bmf was observed, which preceded the induction of apoptosis. A key role for both Bim and Noxa was proposed in HDACi-mediated apoptosis based on our findings that siRNA for Bim and Noxa but not Bmf largely prevented the HDACi-induced loss in mitochondrial membrane potential, caspase processing and phosphatidylserine externalization. Noxa, induced by HDACi, in CLL cells and tumor cell lines, bound extensively to Mcl-1, a major anti-apoptotic Bcl-2 family member present in CLL cells. Our data strongly suggests that HDACi induce apoptosis primarily through inactivation of anti-apoptotic Bcl-2 family members by increases in Bim and Noxa and highlights these increases as a potential clinical target for CLL/lymphoma therapy.
ISSN:0887-6924
1476-5551
DOI:10.1038/sj.leu.2404760