IKK(α) controls canonical TGF(ß)-SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in panc1 cells
The epithelial to mesenchymal transition (EMT) is a crucial step in tumor progression, and the TGFβ-SMAD signaling pathway is an inductor of EMT in many tumor types. One hallmark of EMT is downregulation of the adherens junction protein E-cadherin, a process mediated by transcription factors such as...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2010-12, Vol.123 (Pt 24), p.4231-4239 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The epithelial to mesenchymal transition (EMT) is a crucial step in tumor progression, and the TGFβ-SMAD signaling pathway is an inductor of EMT in many tumor types. One hallmark of EMT is downregulation of the adherens junction protein E-cadherin, a process mediated by transcription factors such as the zinc fingers SNAIL and SLUG. Here, we report that the catalytic IκB kinase (IKK) subunit IKKα is necessary for the silencing of E-cadherin in a Panc1 cell model of TGFβ-SMAD-mediated EMT, independently of NFκB. IKKα regulates canonical TGFβ-SMAD signaling by interacting with SMAD3 and controlling SMAD complex formation on DNA. Furthermore, we demonstrate that the TGFβ-IKKα-SMAD signaling pathway induces transcription of the genes encoding SNAIL and SLUG. In addition, we demonstrate that IKKα also modulates canonical TGFβ-SMAD signaling in human MDA-MB231 breast cancer cells, arguing for a more general impact of IKKα on the control of TGFβ-SMAD signaling. Taken together, these findings indicate that IKKα contributes to the tumor-promoting function of the TGFβ-SMAD signaling pathway in particular cancers. |
---|---|
ISSN: | 1477-9137 |
DOI: | 10.1242/jcs.071100 |