Lipopolysaccharide-Induced Epididymitis Disrupts Epididymal Beta-Defensin Expression and Inhibits Sperm Motility in Rats

Although more than 40 beta-defensins have been identified in rat epididymis, little is known about their regulation or their relation to male infertility caused by inflammation. Using a rat model of epididymitis induced by lipopolysaccharide (LPS), we examined expression of SPAG11E (also known as Bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2010-12, Vol.83 (6), p.1064-1070
Hauptverfasser: Cao, Dongmei, Li, Yidong, Yang, Rui, Wang, Yan, Zhou, Yuchuan, Diao, Hua, Zhao, Yue, Zhang, Yonglian, Lu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although more than 40 beta-defensins have been identified in rat epididymis, little is known about their regulation or their relation to male infertility caused by inflammation. Using a rat model of epididymitis induced by lipopolysaccharide (LPS), we examined expression of SPAG11E (also known as Bin1b), a caput epididymis-specific beta-defensin in rat. Unlike the expression of other beta-defensins in various epithelial cells with upregulated expression after LPS stimulation, expression of SPAG11E was significantly decreased by LPS at the mRNA and protein levels. LPS treatment also significantly decreased both sperm binding to SPAG11E and sperm motility, and supplementation of the spermatozoa with recombinant SPAG11E in vitro remarkably increased both SPAG11E binding and motility of sperm. To clarify whether decreased expression is a common pattern of epididymal beta-defensins after LPS stimulation, we examined the expression of another 12 epididymal beta-defensins expressed in the caput epididymis. For nine of these beta-defensins, expression was decreased, but for the other three, expression remained unaffected. These findings demonstrate that LPS-induced epididymitis can decrease the expression of epididymal beta-defensins and that disruption of SPAG11E expression is involved in the impairment of sperm motility.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.109.082180