Application of optimal control to CPMG refocusing pulse design

We apply optimal control theory (OCT) to the design of refocusing pulses suitable for the CPMG sequence that are robust over a wide range of B 0 and B 1 offsets. We also introduce a model, based on recent progress in the analysis of unitary dynamics in the field of quantum information processing (QI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2010-12, Vol.207 (2), p.220-233
Hauptverfasser: Borneman, Troy W., Hürlimann, Martin D., Cory, David G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply optimal control theory (OCT) to the design of refocusing pulses suitable for the CPMG sequence that are robust over a wide range of B 0 and B 1 offsets. We also introduce a model, based on recent progress in the analysis of unitary dynamics in the field of quantum information processing (QIP), that describes the multiple refocusing dynamics of the CPMG sequence as a dephasing Pauli channel. This model provides a compact characterization of the consequences and severity of residual pulse errors. We illustrate the methods by considering a specific example of designing and analyzing broadband OCT refocusing pulses of length 10 t 180 that are constrained by the maximum instantaneous pulse power. We show that with this refocusing pulse, the CPMG sequence can refocus over 98% of magnetization for resonance offsets up to 3.2 times the maximum RF amplitude, even in the presence of ±10% RF inhomogeneity.
ISSN:1090-7807
1096-0856
DOI:10.1016/j.jmr.2010.09.003