Haptic model fabrication for undergraduate and postgraduate teaching
Abstract Three series of cone-beam computed tomography (CBCT) patient data sets were obtained. These data were exported into DICOM and MIMICS (Materialise's Interactive Medical Image Control System; Materialise, Leuven, Belgium) and were imported for differentiation of various tissues (bone, te...
Gespeichert in:
Veröffentlicht in: | International journal of oral and maxillofacial surgery 2010-12, Vol.39 (12), p.1226-1229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Three series of cone-beam computed tomography (CBCT) patient data sets were obtained. These data were exported into DICOM and MIMICS (Materialise's Interactive Medical Image Control System; Materialise, Leuven, Belgium) and were imported for differentiation of various tissues (bone, teeth, and nerve). After transferring the data to an additive manufacturing machine, three-dimensional (3D) haptic models were fabricated using clear and opaque materials. These models were integrated into phantom heads normally used for education in undergraduate dental education. 3D prototype CBCT-based haptic patient models can be used in undergraduate and postgraduate education. Students can simulate routine standard oral surgical procedures with supervision under ‘dry conditions’. Residents can simulate advanced and complex cases before performing the real operation. |
---|---|
ISSN: | 0901-5027 1399-0020 |
DOI: | 10.1016/j.ijom.2010.07.014 |