Evaluation of corticospinal tract impairment in the brain of patients with amyotrophic lateral sclerosis by using diffusion tensor imaging acquisition schemes with different numbers of diffusion-weighting directions

Amyotrophic lateral sclerosis is characterized by degeneration of upper and lower motor neurons. Diffusion tensor imaging (DTI) indexes obtained along the corticospinal tracts distinguish ALS patients and control subjects. Diffusion tensor imaging can be estimated from at least 6 diffusion-weighted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer assisted tomography 2010-09, Vol.34 (5), p.746-750
Hauptverfasser: Cosottini, Mirco, Giannelli, Marco, Vannozzi, Francesca, Pesaresi, Ilaria, Piazza, Selina, Belmonte, Gina, Siciliano, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amyotrophic lateral sclerosis is characterized by degeneration of upper and lower motor neurons. Diffusion tensor imaging (DTI) indexes obtained along the corticospinal tracts distinguish ALS patients and control subjects. Diffusion tensor imaging can be estimated from at least 6 diffusion-weighted images; however an acquisition scheme with a higher number of diffusion directions allows a more robust estimation of DTI indexes. The aim of the study was to establish if a higher number of diffusion encoding gradients increases the diagnostic accuracy of DTI in ALS. We studied 18 patients and 16 control subjects acquiring 2 DTI data sets with 6 and 31 gradient orientations. The mean diffusivity and fractional anisotropy values were measured along the corticospinal tract. Mean diffusivity in ALS was significantly increased (P = 0.026) with respect to control subjects in acquisition scheme with 31 but not (P = 0.214) with 6 diffusion-weighting directions. Fractional anisotropy was significantly lower in patients both with 6 (P = 0.0036) and with 31 (P = 0.0004) diffusion-weighting directions (0.538 vs 0.588 and 0.530 vs 0.594). Fractional anisotropy receiver operating characteristic curve analysis showed a higher diagnostic accuracy by using 31 diffusion-weighting direction (85.76%) with respect to 6 directions (79.86%). Diffusion tensor imaging confirms its potentials in diagnosing ALS with a good accuracy; the acquisition scheme with a higher diffusion-weighting directions seems to better discriminate between ALS patients and control subjects.
ISSN:0363-8715
1532-3145
DOI:10.1097/RCT.0b013e3181e35129