Mobile Lidar Profiling of Tropical Aerosols and Clouds

Lidar profiling of atmospheric aerosols and clouds in the lower atmosphere has been in progress at the Indian Institute of Tropical Meteorology (IITM), Pune (18°32′N, 73°52′E, 559 m MSL), India, for more than two decades. To enlarge the scope of these studies, an eye-safe new portable dual polarizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2008-08, Vol.25 (8), p.1288-1295
Hauptverfasser: S Devara, PC, Raj, P E, Dani, K K, Pandithurai, G, R Kalapureddy, MC, Sonbawne, S M, Rao, Y J, Saha, S K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lidar profiling of atmospheric aerosols and clouds in the lower atmosphere has been in progress at the Indian Institute of Tropical Meteorology (IITM), Pune (18°32′N, 73°52′E, 559 m MSL), India, for more than two decades. To enlarge the scope of these studies, an eye-safe new portable dual polarization micropulse lidar (DPMPL) has been developed and installed at this station. The system utilizes a diode-pumped solid-state (DPSS) neodymium–yttrium–aluminum–garnet (Nd:YAG) laser second harmonic, with either parallel polarization or alternate parallel and perpendicular polarization, as a transmitter and a Schmidt–Cassegrain telescope, with a high-speed detection and data acquisition and processing system, as a receiver. This online system in real-time mode provides backscatter intensity profiles up to about 75 km at every minute in both parallel and perpendicular polarization channels, corresponding to each state of polarization of the transmitted laser radiation. Thus, this versatile lidar system is expected to play a vital role not only in atmospheric aerosol and cloud physics research and environmental monitoring but also in weather and climate modeling studies of the impact of radiative forcing on the earth–atmosphere radiation balance and hydrological cycle. This paper provides a detailed description of Asia’s only lidar facility and presents initial observations of space–time variations of boundary layer structure from experiments carried out during winter 2005/06.
ISSN:0739-0572
1520-0426
DOI:10.1175/2007JTECHA995.1