Climatological Tools for Low Visibility Forecasting

Forecasters need climatological forecasting tools because of limitations of numerical weather prediction models. In this article, using Finnish SYNOP observations and ERA-40 model reanalysis data, low visibility cases are studied using subjective and objective analysis techniques. For the objective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2007-06, Vol.164 (6-7), p.1383-1396
Hauptverfasser: Hyvärinen, Otto, Julkunen, Jukka, Nietosvaara, Vesa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forecasters need climatological forecasting tools because of limitations of numerical weather prediction models. In this article, using Finnish SYNOP observations and ERA-40 model reanalysis data, low visibility cases are studied using subjective and objective analysis techniques. For the objective analysis, we used an AutoClass clustering algorithm, concentrating on three Finnish airports, namely, the Rovaniemi in northern Finland, Kauhava in western Finland, and Maarianhamina in southwest Finland. These airports represent different climatological conditions. Results suggested that combining of subjective analysis with an objective analysis, e.g., clustering algorithms such as the AutoClass method, can be used to construct climatological guides for forecasters. Some higher level subjective "meta-clustering" was used to make the results physically more reasonable and easier to interpret by the forecasters.[PUBLICATION ABSTRACT]
ISSN:0033-4553
1420-9136
DOI:10.1007/s00024-007-0224-5