Optimal design of a gravity survey network and its application to delineate the jabera-damoh structure in the vindhyan basin, central India
Fractal dimension analysis was carried out for optimal designing of 2-D gravity survey network and to determine an optimum range of gridding interval to generate least aliased Bouguer anomaly maps. As a test case, this method has been successfully applied to the Jabera-Damoh region of the Vindhyan B...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2007-10, Vol.164 (10), p.2009-2022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fractal dimension analysis was carried out for optimal designing of 2-D gravity survey network and to determine an optimum range of gridding interval to generate least aliased Bouguer anomaly maps. As a test case, this method has been successfully applied to the Jabera-Damoh region of the Vindhyan Basin, which is considered as a potential hydrocarbon bearing area. In particular, we aim to delineate accurately the lateral extent of a possible hydrocarbon bearing structure. To achieve this aim, fractal dimension of survey network was computed using 2-D distributions of observation points in the planning phase of the survey so that the optimum station spacing for gravity survey can be obtained. A range of optimum gridding interval for the gravity data set was suggested using the box-counting method of fractal dimension determination. Bouguer anomaly maps of the region are prepared utilizing the optimum gridding interval. For the first time, these anomaly maps clearly outline the gravity evidence of an anomalous rifted structure, which is bounded by parallel faults on either side. This structure is interpreted as a favorable basin for the occurrence of hydrocarbons. Another finding of this study has been the delineation of an apparently small ridge-like structure running east-west, dividing this basin in two parts. A subsurface geological model along a profile across the Jabera structure has also been presented. |
---|---|
ISSN: | 0033-4553 1420-9136 |
DOI: | 10.1007/s00024-007-0252-1 |