Simulation of a Himalayan cloudburst event
Intense rainfall often leads to floods and landslides in the Himalayan region even with rainfall amounts that are considered comparatively moderate over the plains; for example, 'cloudbursts', which are devastating convective phenomena producing sudden high-intensity rainfall (10 cm per ho...
Gespeichert in:
Veröffentlicht in: | Journal of Earth System Science 2006-06, Vol.115 (3), p.299-313 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intense rainfall often leads to floods and landslides in the Himalayan region even with rainfall amounts that are considered comparatively moderate over the plains; for example, 'cloudbursts', which are devastating convective phenomena producing sudden high-intensity rainfall (10 cm per hour) over a small area. Early prediction and warning of such severe local weather systems is crucial to mitigate societal impact arising from the accompanying flash floods. We examine a cloudburst event in the Himalayan region at Shillagarh village in the early hours of 16 July 2003. The storm lasted for less than half an hour, followed by flash floods that affected hundreds of people. We examine the fidelity of MM5 configured with multiple-nested domains (81, 27, 9 and 3 km grid-resolution) for predicting a cloudburst event with attention to horizontal resolution and the cloud microphysics parameterization. The MM5 model predicts the rainfall amount 24 hours in advance. However, the location of the cloudburst is displaced by tens of kilometers[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0253-4126 0973-774X |
DOI: | 10.1007/BF02702044 |