A review of SLR contributions to geophysics in Eurasia by CGS

In the past 30 years the Satellite Laser Ranging(SLR) technique has improved to a large extent, currently achieving a ranging precision down toa few millimeters. Moreover the growth in the size of the international network of SLR stations and therapidly growing constellation of geodetic target satel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surveys in geophysics 2001-01, Vol.22 (5-6), p.481-490
Hauptverfasser: BIANCO, G, DEVOTI, R, LUCERI, V, SCIARRETTA, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past 30 years the Satellite Laser Ranging(SLR) technique has improved to a large extent, currently achieving a ranging precision down toa few millimeters. Moreover the growth in the size of the international network of SLR stations and therapidly growing constellation of geodetic target satellites make the SLR a well established technique for solidEarth studies and for the related Earth subsystem sciences. The long SLR observation history has become a veryimportant source of data for global and local changes detection and monitoring in many different fields.Tectonic plate motion, crustal deformation, post-glacial rebound and subsidence, Earth rotation, and polarmotion, time variations of the Earth's gravitational field, ocean tides modeling, center of mass of the totalEarth system monitoring, International Terrestrial Reference System (ITRS) maintenance are only themain applications in which the SLR technique plays a significant role. Plate boundary zones in whichdeformation is diffuse are in general geographical areas associated with high seismic and volcanic activity.A principal key to understand the geophysics of a plate boundary process is the detailed knowledge of the3-D kinematics. This work will focus on the relevant results of the Eurasian SLR subnetwork in termsof technological evolution and crustal deformation. A general overview of the Eurasian SLR stationperformance will be presented with particular reference to the state-of-the-art SLR observatory MLRO (Matera LaserRanging Observatory). The current tectonic deformations (velocity and strain-rate field) detectedby the Eurasian network and by the former WEGENER/MEDLAS campaigns will also be discussed.[PUBLICATION ABSTRACT]
ISSN:0169-3298
1573-0956
DOI:10.1023/A:1015620201801