Bone Marrow-Derived Cells Contribute to Vascular Inflammation but Do Not Differentiate Into Smooth Muscle Cell Lineages
It has been proposed that bone marrow-derived cells infiltrate the neointima, where they differentiate into smooth muscle (SM) cells; however, technical limitations have hindered clear identification of the lineages of bone marrow-derived "SM cell-like" cells. Using a specific antibody aga...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2010-11, Vol.122 (20), p.2048-2057 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been proposed that bone marrow-derived cells infiltrate the neointima, where they differentiate into smooth muscle (SM) cells; however, technical limitations have hindered clear identification of the lineages of bone marrow-derived "SM cell-like" cells.
Using a specific antibody against the definitive SM cell lineage marker SM myosin heavy chain (SM-MHC) and mouse lines in which reporter genes were driven by regulatory programs for either SM-MHC or SM α-actin, we demonstrated that although some bone marrow-derived cells express SM α-actin in the wire injury-induced neointima, those cells did not express SM-MHC, even 30 weeks after injury. Likewise, no SM-MHC(+) bone marrow-derived cells were found in vascular lesions in apolipoprotein E(-/-)mice or in a heart transplantation vasculopathy model. Instead, the majority of bone marrow-derived SM α-actin(+) cells were also CD115(+)CD11b(+)F4/80(+)Ly-6C(+), which is the surface phenotype of inflammatory monocytes. Moreover, adoptively transferred CD11b(+)Ly-6C(+) bone marrow cells expressed SM α-actin in the injured artery. Expression of inflammation-related genes was significantly higher in neointimal subregions rich in bone marrow-derived SM α-actin(+) cells than in other regions.
It appears that bone marrow-derived SM α-actin(+) cells are of monocyte/macrophage lineage and are involved in vascular remodeling. It is very unlikely that these cells acquire the definitive SM cell lineage. |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/CIRCULATIONAHA.110.965202 |