Fringe detection in noisy complex interferograms
A new algorithm to estimate the two-dimensional local frequencies of phase interferometric data is described. With a complex sine-wave model, demonstration is given that a conventional multiple-signal classification (MUSIC) algorithm can be used in spite of multiplicative noise perturbations. A fast...
Gespeichert in:
Veröffentlicht in: | Applied Optics 1996-07, Vol.35 (20), p.3799-3806 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new algorithm to estimate the two-dimensional local frequencies of phase interferometric data is described. With a complex sine-wave model, demonstration is given that a conventional multiple-signal classification (MUSIC) algorithm can be used in spite of multiplicative noise perturbations. A faster algorithm dedicated to the processing of interferograms is developed and a measure of confidence in the estimate is proposed. We studied numerical performances using synthetic fringes. As a result of the frequency estimation, knowledge of the fringe local width and orientation can be applied to restore noisy phase data. Results of a complex phase filter are presented for real interferograms obtained from synthetic aperture radar images. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.35.003799 |