Determination of short-chain carbonyl compounds in drinking water matrices by bar adsorptive micro-extraction (BAμE) with in situ derivatization

In this contribution, bar adsorptive micro-extraction using polystyrene-divinylbenzene sorbent phase and in situ derivatization with pentafluorophenyl hydrazine, followed by liquid desorption and high-performance liquid chromatography-diode array detection (BAμE(PS-DVB)PFPH in situ-LD/HPLC-DAD), was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2010-12, Vol.398 (7-8), p.3155-3163
Hauptverfasser: Neng, N. R, Nogueira, J. M. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this contribution, bar adsorptive micro-extraction using polystyrene-divinylbenzene sorbent phase and in situ derivatization with pentafluorophenyl hydrazine, followed by liquid desorption and high-performance liquid chromatography-diode array detection (BAμE(PS-DVB)PFPH in situ-LD/HPLC-DAD), was developed for the determination of six short-chain carbonyl compounds (formaldehyde, acetaldehyde, propanal, acetone, butanone, and 2-hexenal) in drinking water matrices. PFPH presented very good specificity as an in situ derivatization agent for short-chain ketones and aldehydes in aqueous media, allowing the formation of adducts with remarkable sensitivity, selectivity and the absence of photodegradation. Assays performed on 30-mL water samples spiked at the 25.0 μg L⁻¹ levels, under optimized experimental conditions, yielded recoveries ranging from 47.4 ± 3.8% to 85.2 ± 3.8%, in which the PS-DVB proved to be a convenient sorbent phase. The analytical performance showed good accuracy, suitable precision (RSD  0.9907) from 1.0 to 80.0 μg L⁻¹. By using the standard addition methodology, the application of the present method to drinking water samples treated with different disinfectants, namely, chloride, ozone and both, allowed very good performances to monitor these priority compounds at the trace level. The proposed methodology proved to be a feasible alternative for polar compound analysis, showing to be easy to implement, reliable, sensitive and requiring a low sample volume to monitor short-chain aldehydes and ketones in drinking water matrices.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-010-4256-9