How a gap junction maintains its structure

In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1984-01, Vol.310 (5975), p.316-318
Hauptverfasser: Braun, Jochen, Abney, James R., Owicki, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 5975
container_start_page 316
container_title Nature (London)
container_volume 310
creator Braun, Jochen
Abney, James R.
Owicki, John C.
description In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.
doi_str_mv 10.1038/310316a0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_81184749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14141651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgSq1V8AWEWYioMJp7MkspaoWCG12HM2mmTJlLTSaIb29KRzcuJCRZ_B_nwI_QOcF3BDN9z9JLJOADNCVcyZxLrQ7RFGOqc6yZPEYnIWwwxoIoPkETySWlRE3R7aL_zCBbwzbbxM4Odd9lLdTdkG7I6iFkYfDRDtG7U3RUQRPc2fjP0PvT49t8kS9fn1_mD8vcMkWHnAF2SpROVZQVUFK-ErykKwDNmABdMKoVlVw5YRlWwilZKAfCEc0rwi1jM3S1n7v1_Ud0YTBtHaxrGuhcH4PRJFHFi38h4elIQRK83kPr-xC8q8zW1y34L0Ow2fVnfvpL9GKcGcvWrX7hWFjKL8ccgoWm8tDZOvyyQjKixI7d7FlISbd23mz66LtU29-V31fqgXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14141651</pqid></control><display><type>article</type><title>How a gap junction maintains its structure</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Braun, Jochen ; Abney, James R. ; Owicki, John C.</creator><creatorcontrib>Braun, Jochen ; Abney, James R. ; Owicki, John C.</creatorcontrib><description>In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/310316a0</identifier><identifier>PMID: 6462217</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; Cell Membrane - ultrastructure ; Cell membranes. Ionic channels. Membrane pores ; Cell structures and functions ; Freeze Fracturing ; Fundamental and applied biological sciences. Psychology ; gap junctions ; Humanities and Social Sciences ; Intercellular Junctions - ultrastructure ; letter ; liver ; Liver - ultrastructure ; Macromolecular Substances ; Membrane Proteins ; Mice ; Microscopy, Electron ; Models, Molecular ; Molecular and cellular biology ; multidisciplinary ; plasma membranes ; proteins ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1984-01, Vol.310 (5975), p.316-318</ispartof><rights>Springer Nature Limited 1984</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</citedby><cites>FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/310316a0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/310316a0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9631757$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6462217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braun, Jochen</creatorcontrib><creatorcontrib>Abney, James R.</creatorcontrib><creatorcontrib>Owicki, John C.</creatorcontrib><title>How a gap junction maintains its structure</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cell membranes. Ionic channels. Membrane pores</subject><subject>Cell structures and functions</subject><subject>Freeze Fracturing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gap junctions</subject><subject>Humanities and Social Sciences</subject><subject>Intercellular Junctions - ultrastructure</subject><subject>letter</subject><subject>liver</subject><subject>Liver - ultrastructure</subject><subject>Macromolecular Substances</subject><subject>Membrane Proteins</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>multidisciplinary</subject><subject>plasma membranes</subject><subject>proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKAzEUBuAgSq1V8AWEWYioMJp7MkspaoWCG12HM2mmTJlLTSaIb29KRzcuJCRZ_B_nwI_QOcF3BDN9z9JLJOADNCVcyZxLrQ7RFGOqc6yZPEYnIWwwxoIoPkETySWlRE3R7aL_zCBbwzbbxM4Odd9lLdTdkG7I6iFkYfDRDtG7U3RUQRPc2fjP0PvT49t8kS9fn1_mD8vcMkWHnAF2SpROVZQVUFK-ErykKwDNmABdMKoVlVw5YRlWwilZKAfCEc0rwi1jM3S1n7v1_Ud0YTBtHaxrGuhcH4PRJFHFi38h4elIQRK83kPr-xC8q8zW1y34L0Ow2fVnfvpL9GKcGcvWrX7hWFjKL8ccgoWm8tDZOvyyQjKixI7d7FlISbd23mz66LtU29-V31fqgXk</recordid><startdate>19840101</startdate><enddate>19840101</enddate><creator>Braun, Jochen</creator><creator>Abney, James R.</creator><creator>Owicki, John C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19840101</creationdate><title>How a gap junction maintains its structure</title><author>Braun, Jochen ; Abney, James R. ; Owicki, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cell membranes. Ionic channels. Membrane pores</topic><topic>Cell structures and functions</topic><topic>Freeze Fracturing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gap junctions</topic><topic>Humanities and Social Sciences</topic><topic>Intercellular Junctions - ultrastructure</topic><topic>letter</topic><topic>liver</topic><topic>Liver - ultrastructure</topic><topic>Macromolecular Substances</topic><topic>Membrane Proteins</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>multidisciplinary</topic><topic>plasma membranes</topic><topic>proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Jochen</creatorcontrib><creatorcontrib>Abney, James R.</creatorcontrib><creatorcontrib>Owicki, John C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Jochen</au><au>Abney, James R.</au><au>Owicki, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How a gap junction maintains its structure</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1984-01-01</date><risdate>1984</risdate><volume>310</volume><issue>5975</issue><spage>316</spage><epage>318</epage><pages>316-318</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>6462217</pmid><doi>10.1038/310316a0</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1984-01, Vol.310 (5975), p.316-318
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_81184749
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Animals
Biological and medical sciences
Biophysical Phenomena
Biophysics
Cell Membrane - ultrastructure
Cell membranes. Ionic channels. Membrane pores
Cell structures and functions
Freeze Fracturing
Fundamental and applied biological sciences. Psychology
gap junctions
Humanities and Social Sciences
Intercellular Junctions - ultrastructure
letter
liver
Liver - ultrastructure
Macromolecular Substances
Membrane Proteins
Mice
Microscopy, Electron
Models, Molecular
Molecular and cellular biology
multidisciplinary
plasma membranes
proteins
Science
Science (multidisciplinary)
title How a gap junction maintains its structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20a%20gap%20junction%20maintains%20its%20structure&rft.jtitle=Nature%20(London)&rft.au=Braun,%20Jochen&rft.date=1984-01-01&rft.volume=310&rft.issue=5975&rft.spage=316&rft.epage=318&rft.pages=316-318&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/310316a0&rft_dat=%3Cproquest_cross%3E14141651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14141651&rft_id=info:pmid/6462217&rfr_iscdi=true