How a gap junction maintains its structure
In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1984-01, Vol.310 (5975), p.316-318 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 5975 |
container_start_page | 316 |
container_title | Nature (London) |
container_volume | 310 |
creator | Braun, Jochen Abney, James R. Owicki, John C. |
description | In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes
1,2
. Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions. |
doi_str_mv | 10.1038/310316a0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_81184749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14141651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgSq1V8AWEWYioMJp7MkspaoWCG12HM2mmTJlLTSaIb29KRzcuJCRZ_B_nwI_QOcF3BDN9z9JLJOADNCVcyZxLrQ7RFGOqc6yZPEYnIWwwxoIoPkETySWlRE3R7aL_zCBbwzbbxM4Odd9lLdTdkG7I6iFkYfDRDtG7U3RUQRPc2fjP0PvT49t8kS9fn1_mD8vcMkWHnAF2SpROVZQVUFK-ErykKwDNmABdMKoVlVw5YRlWwilZKAfCEc0rwi1jM3S1n7v1_Ud0YTBtHaxrGuhcH4PRJFHFi38h4elIQRK83kPr-xC8q8zW1y34L0Ow2fVnfvpL9GKcGcvWrX7hWFjKL8ccgoWm8tDZOvyyQjKixI7d7FlISbd23mz66LtU29-V31fqgXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14141651</pqid></control><display><type>article</type><title>How a gap junction maintains its structure</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Braun, Jochen ; Abney, James R. ; Owicki, John C.</creator><creatorcontrib>Braun, Jochen ; Abney, James R. ; Owicki, John C.</creatorcontrib><description>In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes
1,2
. Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/310316a0</identifier><identifier>PMID: 6462217</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; Cell Membrane - ultrastructure ; Cell membranes. Ionic channels. Membrane pores ; Cell structures and functions ; Freeze Fracturing ; Fundamental and applied biological sciences. Psychology ; gap junctions ; Humanities and Social Sciences ; Intercellular Junctions - ultrastructure ; letter ; liver ; Liver - ultrastructure ; Macromolecular Substances ; Membrane Proteins ; Mice ; Microscopy, Electron ; Models, Molecular ; Molecular and cellular biology ; multidisciplinary ; plasma membranes ; proteins ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1984-01, Vol.310 (5975), p.316-318</ispartof><rights>Springer Nature Limited 1984</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</citedby><cites>FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/310316a0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/310316a0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9631757$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6462217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braun, Jochen</creatorcontrib><creatorcontrib>Abney, James R.</creatorcontrib><creatorcontrib>Owicki, John C.</creatorcontrib><title>How a gap junction maintains its structure</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes
1,2
. Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cell membranes. Ionic channels. Membrane pores</subject><subject>Cell structures and functions</subject><subject>Freeze Fracturing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gap junctions</subject><subject>Humanities and Social Sciences</subject><subject>Intercellular Junctions - ultrastructure</subject><subject>letter</subject><subject>liver</subject><subject>Liver - ultrastructure</subject><subject>Macromolecular Substances</subject><subject>Membrane Proteins</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>multidisciplinary</subject><subject>plasma membranes</subject><subject>proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKAzEUBuAgSq1V8AWEWYioMJp7MkspaoWCG12HM2mmTJlLTSaIb29KRzcuJCRZ_B_nwI_QOcF3BDN9z9JLJOADNCVcyZxLrQ7RFGOqc6yZPEYnIWwwxoIoPkETySWlRE3R7aL_zCBbwzbbxM4Odd9lLdTdkG7I6iFkYfDRDtG7U3RUQRPc2fjP0PvT49t8kS9fn1_mD8vcMkWHnAF2SpROVZQVUFK-ErykKwDNmABdMKoVlVw5YRlWwilZKAfCEc0rwi1jM3S1n7v1_Ud0YTBtHaxrGuhcH4PRJFHFi38h4elIQRK83kPr-xC8q8zW1y34L0Ow2fVnfvpL9GKcGcvWrX7hWFjKL8ccgoWm8tDZOvyyQjKixI7d7FlISbd23mz66LtU29-V31fqgXk</recordid><startdate>19840101</startdate><enddate>19840101</enddate><creator>Braun, Jochen</creator><creator>Abney, James R.</creator><creator>Owicki, John C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19840101</creationdate><title>How a gap junction maintains its structure</title><author>Braun, Jochen ; Abney, James R. ; Owicki, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-3a0e75be7f239ab24d54b2daa8335a8932872647e5c3075e7697ea5e184f14c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cell membranes. Ionic channels. Membrane pores</topic><topic>Cell structures and functions</topic><topic>Freeze Fracturing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gap junctions</topic><topic>Humanities and Social Sciences</topic><topic>Intercellular Junctions - ultrastructure</topic><topic>letter</topic><topic>liver</topic><topic>Liver - ultrastructure</topic><topic>Macromolecular Substances</topic><topic>Membrane Proteins</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>multidisciplinary</topic><topic>plasma membranes</topic><topic>proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Jochen</creatorcontrib><creatorcontrib>Abney, James R.</creatorcontrib><creatorcontrib>Owicki, John C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Jochen</au><au>Abney, James R.</au><au>Owicki, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How a gap junction maintains its structure</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1984-01-01</date><risdate>1984</risdate><volume>310</volume><issue>5975</issue><spage>316</spage><epage>318</epage><pages>316-318</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes
1,2
. Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>6462217</pmid><doi>10.1038/310316a0</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1984-01, Vol.310 (5975), p.316-318 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_81184749 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | Animals Biological and medical sciences Biophysical Phenomena Biophysics Cell Membrane - ultrastructure Cell membranes. Ionic channels. Membrane pores Cell structures and functions Freeze Fracturing Fundamental and applied biological sciences. Psychology gap junctions Humanities and Social Sciences Intercellular Junctions - ultrastructure letter liver Liver - ultrastructure Macromolecular Substances Membrane Proteins Mice Microscopy, Electron Models, Molecular Molecular and cellular biology multidisciplinary plasma membranes proteins Science Science (multidisciplinary) |
title | How a gap junction maintains its structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20a%20gap%20junction%20maintains%20its%20structure&rft.jtitle=Nature%20(London)&rft.au=Braun,%20Jochen&rft.date=1984-01-01&rft.volume=310&rft.issue=5975&rft.spage=316&rft.epage=318&rft.pages=316-318&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/310316a0&rft_dat=%3Cproquest_cross%3E14141651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14141651&rft_id=info:pmid/6462217&rfr_iscdi=true |